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RESUMEN

El trabajo de investigación presentado propone una solución para la estimación de fallas en actu-
adores en sistemas multi-agentes (MAS, por sus siglas en inglés) en configuración líder-seguidor
modelados en espacio de estados y cuya comunicación está dada de acuerdo a la teoría de grafos.
Para conseguir este objetivo, se diseña un observador Proporcional-Integral (PI) que permite esti-
mar las variables de estado no disponibles o no medibles del sistema, es decir, que la matriz C del
espacio de estados es distinta a la matriz identidad, C 6= I, y, de manera simultánea, permite estimar
correctamente las fallas que los actuadores puedan presentar. Este observador ha sido diseñado,
mediante el criterio de estabilidad de Lyapunov, para sistemas lineales. Además del observador
lineal, esta investigación extiende sus resultados al campo de los sistemas no lineales a través de
las técnicas utilizadas en los sistemas convexos. En ambos casos, las soluciones para encontrar las
ganancias del observador se presentan en desigualdades matriciales lineales (LMI, por sus siglas
en inglés).

Para diseñar este observador PI, se presentan todas las herramientas que el lector necesitará para
la correcta compresión del desarrollo de este trabajo. Se abordará sobre las generalidades de los
sistemas convexos, de manera que sea posible trabajar con sistemas no lineales representándolos
como sistemas multimodelos lineales. Se desarrollarán observadores de estados para comprender
el funcionamiento de estos así como su importancia en el control automático. De igual manera, se
introducen y se explican a detalle los preliminares matemáticos necesarios para diseñar los obser-
vadores de estados y los estimadores de fallas en sistemas Multi-Agentes.





ABSTRACT

This research proposes a solution for actuator fault estimation of multi-agent systems (MAS) for
leader-following configuration. Space state models represent the dynamic of each agent in the
network and the graph theory provides the communication between the agents. To achieve this
objective, a Proportional-Integral Observer (PI) estimates the unavailable or non-measurable state
variables of the system, that is, the C matrix of the state space is different from the identity matrix,
i.e., C not = I, and, simultaneously, the observer proposed estimates adequately the actuator faults.
This observer uses the Lyapunov stability criterion to design the observer gain matrices and the
fault estimator gain matrices. In addition to the linear version, this research extends the results to
deals with non-linear systems through convex systems techniques. In both cases, the linear matrix
inequalities (LMI) method gives the solution to find the gain matrices.

To design this PI observer and for the correct understanding of all developments in this research,
this work provides all the theoretical basis to the reader. The explanation of the section Convex
Systems allows working with non-linear systems represented with linear multi-model systems. To
understand how the state observers work as well as their importance in automatic control, this work
gives some examples to learn to design state observers in the section State Estimation observer-
based. In the same way, in detail, the section of Multi-agent systems provides the mathematical
preliminaries necessary to design the state observer and fault estimator for Multi-Agents systems.
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Chapter 1

Project Characterization

1.1 Introduction

Cooperative control of Multiagent systems (MAS) has been recently studied in order to achieve a

common objective of several agents (Lewis et al. 2013). MAS is a collection of agents cooperating

or competing with each other in order to fulfill common or individual goals (Liu & Fang 2007).

In that sense, an agent is defined as an element of the system that autonomously performs actions

through its actuators according to the data obtained from its environment through sensors. MAS

with identical agents are called homogeneous, e.g., a fleet of identical robots, or wind turbine

farm, etc. On the other hand, when the MAS is integrated by nonidentical systems it is called

heterogeneous or nonhomogeneous (Li et al. 2012), e.g microgrid systems. Some applications of

MAS can be found in the field of mobile robotics (Koubâa et al. 2015), transportation (Okdinawati

et al. 2017), microgrid systems (Zhao et al. 2015), wind turbines farms (Akbarimajd et al. 2018),

among others.

Recently, fault-tolerant control systems (FTC) for MAS has been explored in order to increase

the reliability and safety of such systems. For example, in Yang et al. (2011) was developed an

FTC for a class of nonlinear MAS that keeps the system under a required performance region

even in case of faults occurring in one of the agents. The authors in Wang et al. (2015) propose
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a robust adaptive controller for multiagent systems with nonidentical dynamic uncertainties and

undetectable faults in actuators based on the Lyapunov approach. Davoodi et al. (2016) developed

a controller for a homogeneous multiagent system by considering distributed detection filters. In

Deng & Yang (2017) was proposed a nonlinear FTC MAS by considering a fuzzy algorithm to

deal with the non-linearities of the system. Chadli et al. (2017) presented a filter for detection and

isolation of fault in a multiagent system where each of the agents is not identical. Nevertheless, it is

well known that the applicability of FTC algorithms depends on the accuracy of the mathematical

model. Nonetheless, most of the algorithms were developed for MAS approximated by linear

time-varying models (LTIs). LTIs models are valid only near to an operation or equilibrium point,

and they did not consider nonlinear dynamics, which are present in all physical systems. To deal

with this limitation, an approach that has proved to represent complex nonlinear dynamics are

convex systems modeled by Linear Parameter Varying (LPV) or Takagi-Sugeno (TS) models which

increase the physical representativity of a real physical system (Gómez-Peñate et al. 2018). FTC for

lateral vehicle dynamics modeled as TS with sensor faults was developed in Ichalal et al. (2016)

while FTC for TS with sensor and actuator faults simultaneously was proposed in Kharrat et al.

(2018). Nevertheless, to design a Fault-tolerant control it is desirable to estimate the fault in the

process to keep the system under operation region .epliu2011fault.

The present work proposes a methodology to develop a state and fault estimator observer for

convex multi-agent systems in the presence of actuator faults. The main objective is to design

the observer for linear multi-agent systems according to graph theory and find the gain matrices

involved through the Lyapunov Criterion. Then, the target is to extend this development to deal

with convex multi-agent systems. All developments consider directed and undirected graphs for

leader-following configuration.

1.2 Hypothesis

A Proportional-Integral observer can be designed to estimate states and faults for linear multi-agent

systems and convex multi-agent systems with the leader-following configuration. The observer



1.3. OBJECTIVES 3

will estimate states and faults in a shorter convergence time compared to conventional proportional

observers. Further, the communication graphs can be directed and undirected indistinctly.

1.3 Objectives

1.3.1 General Objective

Design an observer to estimate states and actuator faults in multi-agent convex systems modeled

with directed and undirected graphs.

1.3.2 Specific Objectives

• Study control algorithms for linear multi-agent systems with full state variables.

• Desing state observers for linear multi-agent systems modeled under graph topologies.

• Desing an observer to estimate states and faults in linear multi-agent systems.

• Extend the Fault Estimator to multi-agent convex systems.



Chapter 2

Theoretical framework

This chapter presents general concepts about the three subjects involved: Convex systems, state

estimation observers, and multi-agent systems. First, convex systems are presented with tech-

niques used to apply linear concepts in nonlinear mathematical models. Second, state estimation

observer-based is studied and multiple examples are given to understand how the observer works

and the method to design them. Finally, the theory of Multiagent systems is analyzed to develop a

distributed controller with the objective of controls a set of systems with the same law control. The

observer is distributed in the sense that it depends only on the state variables of each system and

the relative state of the neighbor systems. These concepts will be properly explained below.

2.1 Convex Systems

The Takagi-Sugeno (TS) models emerge as an attempt to formalize the fuzzy control theory. In

1985, the TS modeling technique was presented, based on a set of linguistic rules that allow linear

combinations of the system states Takagi & Sugeno (1985). An improved version with an approach

that contains greater mathematical rigor was presented in Cao & Frank (2001) using the theory of

Lyapunov, where local dynamics of discrete nonlinear systems are described. However, up to this

point, TS models are described as a heuristic part technique and part based on mathematical models.
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Subsequently, due to the ease of adapting the Takagi-Sugeno technique to mathematical models

and their application to physical systems, these become very popular. TS systems can be seen as a

linear combination of local models that are blended by nonlinear convex functions. Due to this his-

torical question, there is a confusion about the adequate terminology to refer to the Takagi-Sugeno

model-based that are not related with the field of fuzzy logic. TS systems are also called quasi-

linear Parameter Varying systems. Due to the above, the title of this work uses the term "convex" to

differentiate it from works that belong to the fuzzy control researches. This philosophical question

was deathly discussed recently in López-Estrada et al. (2019).

The applications for this technique are diverse; it is enough to have a nonlinear mathematical

model to be able to develop a TS representation that allows knowing the behavior of the system in

an accurate way or through an approximation in a larger work area with respect to the LTI models or

LPV, Fig. 2.1(Witczak 2014, p. 8). It is out of the scope of this research to discuss the similarity and

the difference between qLPV, LPV or TS models. Then, we refer to these multi-models representa-

tions as convex systems. Stability analyses have been proposed for the use of this technique such as

can see in Cao & Frank (2001), robust control Lien & Yu (2008), state observer design Marx et al.

(2007), estimation of faults in sensors and actuators Youssef et al. (2017) and applications to real

systems such as wind turbines Bououden et al. (2012), steam generator of a thermal power station

Astorga-Zaragoza et al. (2018), controllers of UAVs Kladis et al. (2011), among many others.
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LTI

LPV

T-S

Figure 2.1: Performance for a TS model.

According to Lendek et al. (2011) and Guzmán-Rabasa et al. (2019), the general form of a

convex model that describes a non-linear dynamic system in continuous time is given by:

ẋ(t) =
m

∑
j=1

ρ j(z(t))(A jx(t)+B ju(t))

y(t) =Cx(t)

(2.1)

where m is the number of local linear models, x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state,

input and output vectors respectively. A j ∈ Rn×n, B j ∈ Rn×m, and C ∈ Rp×n are known matrices

with appropriated dimensions. z(t) is the vector of scheduling variables which may depend on the

states, inputs, measurements, or other exogenous variables. The scheduling variables represent the

nonlinearities of the system and are chosen as zq(·) ∈ [nlq,nlq], q = 1...p where nlq and nlq are

the minimum and maximum, respectively and p is the number of nonlinear terms in the system.

ρ j(z(t)) is the scheduling or membership function which is constructed with the combination of
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the weighting functions ηq. The weighting functions are strongly related to nonlinearities in the

system and for each zq exist two weighting functions given by:

η
q
0(·) =

nlq− zq(·)
nlq−nlq

,η
q
1(·) = 1−η

q
0(·);

q = 1...p

(2.2)

where η
q
0(·) and η

q
1(·) are normalized, i.e., η

q
0(·) ≥ 0, η

q
1(·) ≥ 0, and η

q
0(·) +η

q
1(·) = 1,∀q.

Then, the number of rules or local models is given by: m = 2p. The membership functions ρ j(z(t))

satisfies the property of convex sum:

m

∑
j=1

ρ j(z(t)) = 1

0≤ ρ j(z(t))≤ 1, ∀ j ∈ {1,2, ...,m}
(2.3)

Remark. The scope of this investigation is limited to consider nonlinearities in matrices A and

B, then matrix C has a linear representation in all the research.

2.1.1 Linear Convex Systems examples

This section provides some examples to clarify the convex systems theory. First, some examples

are introduced to calculate the scheduling variables z(·), the weighting functions ηq, and the mem-

bership functions ρ j(z(t)). Finally, one example allows comparing the nonlinear dynamics and the

representation of the convex dynamic, where it is possible to see those convex models are an exact

representation of the nonlinear models.

Example 1. Consider a nonlinear system whose dynamics is represented in a space state model

by:
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ẋ(t) =

x2(t) x1(t)

1 −2

x(t)+

x2(t)

1

u(t)

y(t) =Cx(t)

(2.4)

Since the output vector y(t) is linear, it will be omitted in the development of the multi-models.

Evidently, the nonlinear terms in this model are x1(t) and x2(t) in the matrix A and B. Then the

scheduling variables can be chosen as z1(t)= x2(t) and z2(t)= x1(t). Note that scheduling variables

are not unique for a model, the developer selects the scheduling variables ensuring the observability

of the system and getting the least amount of multi-models possible. Then, the system can be

rewritten as:

ẋ(t) =

z1(t) z2(t)

1 −2

x(t)+

z1(t)

1

u(t) (2.5)

The maximum and minimum range of the scheduling variables depends on the inferior limit and

superior limit of the nonlinear dynamics, i.e., the minimum and maximum ranges are given by the

natural dynamics of the system. We assume that z1(t) = x2(t) ∈ [−2 2] and z2(t) = x1(t) ∈ [1 3].

This limits, are expressed for convex systems as:

nl1 =−2

nl1 = 2

nl2 = 1

nl2 = 3

(2.6)

where, evidently, nlq represents the minimum and nlq the maximum. As it was explained

before, there are two weighting functions ηq(t) for each scheduling variable zq(t). Substituting the
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appropriate values in 2.2, the weighting functions are calculated as:

η
1
0(t) =

2− x2

2− (−2)
=

2− x2

4

η
1
1(t) = 1−η

1
0 = 1− 2− x2

4
=

2+ x2

4

η
2
0(t) =

3− x1

3− (−1)
=

3− x1

4

η
2
1(t) = 1−η

2
0 = 1− 3− x1

4
=

1+ x1

4

(2.7)

Since there are two scheduling variables z1(t) and z2(t), i.e., p = 2, the number of local models

and weighting functions are given by m = 2p = 22 = 4. Corresponding weighting functions and

local models are calculated as follow:

1. A1, B1, and ρ1z(t)

A1 =

nl1 nl2

1 −2

 , B1 =

nl1

1


A1 =

−2 1

1 −2

 , B1 =

−2

1

 (2.8)

and the weighting function is computed as: ρ1(z) = η1
0η2

0

2. A2, B2, and ρ2(z(t))

A2 =

nl1 nl2

1 −2

 , B1 =

nl1

1


A2 =

−2 3

1 −2

 , B1 =

−2

1

 (2.9)

and the weighting function is computed as: ρ2(z) = η1
0η2

1
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3. A3, B3, and ρ3(z(t))

A3 =

nl1 nl2

1 −2

 , B1 =

nl1

1


A3 =

2 1

1 −2

 , B1 =

2

1

 (2.10)

and the weighting function is computed as: ρ3(z) = η1
1η2

0

4. A4, B4, and ρ4(z(t))

A4 =

nl1 nl2

1 −2

 , B1 =

nl1

1


A4 =

2 3

1 −2

 , B1 =

2

1

 (2.11)

and the weighting function is computed as: ρ4(z) = η1
1η2

1

Example 2. Similar to Example 1, in this example a nonlinear system with two state variables

x1(t) and x2(t) and with two scheduling functions z1(t) and z2(t) is presented. The objective is to

calculate the linear multi-models A j and B j and the corresponding weighting functions zq(t). Note

that nonlinearities are present only in matrix A. Consider the nonlinear system represented in space

state:

ẋ(t) =

x1(t)+ x2(t) x2
2(t)

4 7

x(t)+

3.5

2

u(t) (2.12)

Scheduling variables can be chosen as z1(t) = x1(t)+x2(t) ∈ [1 2] and z2(t) = x2
2(t) ∈ [−3 2],

where maximum nlq and minimum nlq are given demonstratively. Rewriting, one gets:
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ẋ(t) =

z1(t) z2(t)

4 7

x(t)+

3.5

2

u(t) (2.13)

with

nl1 = 1

nl1 = 2

nl2 =−3

nl2 = 2

(2.14)

The weighting functions are calculated as:

η
1
0 =

2− (x1 + x2)

2−1
= 2− x1− x2

η
1
1 = 1−η

1
0 = 1− (2− x1− x2) =−1+ x1 + x2

η
2
0 =

2− x2
2

2− (−3)
=

2− x2
2

5

η
2
1 = 1−η

2
0 = 1−

2− x2
2

5
=

3+ x2
2

5

(2.15)

The two scheduling variables z1(t) and z2(t) generates m= 2p = 22 = 4 multi-models for matrix

A j and weighting functions, consider that B matrix is linear.

1. A1 and ρ1z(t)

A1 =

nl1 nl2

4 7

=

1 −3

4 7

x (2.16)

and the weighting function is computed as: ρ1(z) = η1
0η2

0
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2. A2 and ρ2(z(t))

A2 =

nl1 nl2

4 7

=

1 2

4 7

x (2.17)

and the weighting function is computed as: ρ2(z) = η1
0η2

1

3. A3 and ρ3(z(t))

A3 =

nl1 nl2

4 7

=

2 −3

4 7

x (2.18)

and the weighting function is computed as: ρ3(z) = η1
1η2

0

4. A4 and ρ4(z(t))

A3 =

nl1 nl2

4 7

=

2 2

4 7

x (2.19)

and the weighting functions is computed as: ρ4(z) = η1
1η2

1

Example 3. In order to clarify the combinations to obtain the membership functions ρ j(z),

this example consider 3 scheduling variables, so that, m = 2p = 23 = 8 multi-models are obtained.

Following nonlinear model is given:

ẋ(t) =


x1(t)x2(t) 3 −1

0 x2
1(t) 2

x3(t) 1 3

x(t)+


1 0

x2
1(t) 2

1 x3(t)

u(t) (2.20)

which can be transformed to:

ẋ(t) =


z1(t) 3 −1

0 z2(t) 2

z3(t) 1 3

x(t)+


1 0

z2(t) 2

1 z3(t)

u(t) (2.21)

with z1(t) = x1(t)x2(t) ∈ [−2 4], z2(t) = x2
1(t) ∈ [0 3], and z3(t) = x3(t) ∈ [2 5]. In order to
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calculate the weighting functions η
q
0 and η

q
1, the limits nlq and nlq, with q = 1,2,3, are defined:

nl1 =−2

nl1 = 4

nl2 = 0

nl2 = 3

nl3 = 2

nl3 = 5

(2.22)

Calculating the weighting functions:

η
1
0 =

4− x1x2

4− (−2)
=

4− x1x2

6

η
1
1 = 1−η

1
0 = 1− 4− x1x2

6
=

2+ x1x2

6

η
2
0 =

3− x2
1

3− (0)
=

3− x2
1

3

η
2
1 = 1−η

2
0 = 1−

3− x2
1

3
=

x2
1

3

η
3
0 =

5− x3

5−2
=

5− x3

3

η
3
1 = 1−η

3
0 = 1− 5− x3

3
=
−2+ x3

3

(2.23)

with the three nonlinearities p = 3 and the local models and weighting functions are given by

m = 8. Following, the 8 local models and the corresponding weighting functions are given:
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1. A1, B1, and ρ1(z)

A1 =


nl1 3 −1

0 nl2 2

nl3 1 3

 , B1 =


1 0

nl2 2

1 nl3



A1 =


−2 3 −1

0 0 2

2 1 3

 , B1 =


1 0

0 2

1 2


(2.24)

and the weighting function is computed as: ρ1(z) = η1
0η2

0η3
0

2. A2, B2, and ρ2(z)

A2 =


nl1 3 −1

0 nl2 2

nl3 1 3

 , B2 =


1 0

nl2 2

1 nl3



A2 =


−2 3 −1

0 0 2

5 1 3

 , B2 =


1 0

0 2

1 5


(2.25)

and the weighting function is computed as: ρ2(z) = η1
0η2

0η3
1

3. A3, B3, and ρ3(z)

A3 =


nl1 3 −1

0 nl2 2

nl3 1 3

 , B3 =


1 0

nl2 2

1 nl3



A3 =


−2 3 −1

0 3 2

2 1 3

 , B3 =


1 0

3 2

1 2


(2.26)
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and the weighting function is computed as: ρ3(z) = η1
0η2

1η3
0

4. A4, B4, and ρ4(z(t))

A4 =


nl1 3 −1

0 nl2 2

nl3 1 3

 , B4 =


1 0

nl2 2

1 nl3



A4 =


−2 3 −1

0 3 2

5 1 3

 , B4 =


1 0

3 2

1 5


(2.27)

and the weighting function is computed as: ρ3(z) = η1
0η2

1η3
1

5. A5, B5, and ρ5(z)

A4 =


nl1 3 −1

0 nl2 2

nl3 1 3

 , B4 =


1 0

nl2 2

1 nl3



A4 =


4 3 −1

0 0 2

2 1 3

 , B4 =


1 0

0 2

1 2


(2.28)

and the weighting function is computed as: ρ3(z) = η1
1η2

0η3
0
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6. A6, B6, and ρ6(z)

A6 =


nl1 3 −1

0 nl2 2

nl3 1 3

 , B6 =


1 0

nl2 2

1 nl3



A6 =


4 3 −1

2 0 2

5 1 3

 , B6 =


1 0

0 2

1 5


(2.29)

and the weighting function is computed as: ρ3(z) = η1
1η2

0η3
1

7. A7, B7, and ρ7(z)

A7 =


nl1 3 −1

0 nl2 2

nl3 1 3

 , B7 =


1 0

nl2 2

1 nl3



A7 =


4 3 −1

0 3 2

2 1 3

 , B7 =


1 0

3 2

1 2


(2.30)

and the weighting function is computed as: ρ3(z) = η1
1η2

1η3
0

8. A8, B8, and ρ8(z)

A8 =


nl1 3 −1

0 nl2 2

nl3 1 3

 , B8 =


1 0

nl2 2

1 nl3



A8 =


4 3 −1

2 3 2

5 1 3

 , B8 =


1 0

3 2

1 5


(2.31)
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and the weighting function is computed as: ρ3(z) = η1
1η2

1η3
1

Remark. For any nonlinear system, the number of local models is given by m = 2p. This

method allows for obtaining an exact representation of the nonlinear model.

2.2 State Estimation Observer-Based

The modern industry requires faster processes with reduced costs. Under these conditions, engi-

neers have the function of designing efficient automatic systems, with the least possible cost. This

automation is carried out with different strategies as Fuzzy Control that focuses on gaining an in-

tuitive understanding of how to best control the process, then this information is loaded directly

into the fuzzy controller (Passino et al. 1998). Another approach is The Neural networks that have

a lot of successful applications although, in general, from a theoretical point of view, it presents a

lack of a firm mathematical basis in stability, robustness, and performance analysis(Ge et al. 2013).

However, the main concern of this work is the model-based control where a mathematical model

of the system is required.

Model-based control is limited in the complete representation of the system since an exact rep-

resentation requires a very complex mathematical model. However, physicists and mathematicians

provides to the engineers mathematical models that represents enough to keep in control the sys-

tems. Usually, for control purposes, the system is represented in a state space representation (Ogata

2010) where a vector of state variables provides the information of the system modeled as position,

velocity, acceleration, flow, temperature, and so on, depending of the mathematical model. In

continuous time, a system is presented for the following space state model:

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(2.32)

where x ∈ RN is the state vector, u ∈ Rm is the control input vector, y ∈ Rp is the measured
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output vector. Matrices A, B, C, and D are constant with appropriate dimensions. In order to

control a system, the pair (A,B) must to be controllable, which means that the system has enough

actuators to control the system. Commonly, matrix C provides the available state variables, in other

words, matrix C allows to know what physical sensors there are in the system. Matrix D is used

only if the systems considers a direct output from the control input vector u which is not common

in most of the industrial applications.

Consider the following numerical example where the input vector u does not affect directly the

output vector y, i.e., D = 0:

ẋ =


−5 3 2

4 −4 −3

0 2 −3

x+


0

1

2

u

y =


1 0 0

0 1 0

0 0 1

x

(2.33)

The dynamics response to a step signal in the time 0s is illustrated in 2.2. The system 2.33 is

evidently stable, and the state variables x1, x2, and x3 stabilize naturally after the time 1.5s. Note

that, for this numerical examples, matrix C = I which means that all state variables are available.

In practical applications, the measured output vector y(t) does not provides all states variable

since, physically, the cost of some sensors can be very high, i.e., C 6= I. Under this limitation,

state observers allows to estimate, based only on the available state variables, the dynamics of the

unknown state variables. Then, observers states can be understood as virtual sensor designed in

order to provide the unknown state variables. The only requirement to apply this method is that the

pair A,C in the space state representation must be observable, which means that, with the system in

state x(t0), it is possible to determine this state from the observation of the output over a finite time

interval (Ogata 2010). The system 2.32 is observable if and only if the nmxn observability matrix
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Figure 2.2: Response to step signal


C

CA
...

CAn−1

 (2.34)

is of rank n, i.e., it has n linearly independent column vectors.

Based on 2.33, the last example, if only states variables x1 and x2 are available, x3 can be

estimated if and only if the observability matrix of system 2.35 is of rank n:

ẋ =


−5 3 2

4 −4 −3

0 2 −3

x+


0

1

2

u

y =

1 0 0

0 1 0

x

(2.35)



20 2. THEORETICAL FRAMEWORK

and its observability matrix is calculated as:
C

CA

CA2

 (2.36)

with rank 3. Then, this system is observable and it is possible to develop a state observer in

order to estimate x3.

Given the system 2.32, the following Luenberger observer(Radke & Gao 2006) is proposed in

order to estimate states:

˙̂x(t) = Ax̂(t)+Bu(t)+R(y− ŷ)

ŷ(t) =Cx̂(t)
(2.37)

Where x̂ is the estimated state vector, R is the observer gain matrix, and ŷ is the estimated output

vector. Note that D is not included in this observer since overall is not required. Henceforth, in this

section, time dependence (t) will be omitted to simplify the mathematical expressions.

It is defined the state estimation error as:

e = x− x̂ (2.38)

The target to develop the observer it is to design a gain matrix R such that e⇒ 0. If we derive

2.38, one gets:

ė = ẋ− ˙̂x (2.39)

and substituting 2.32 and 2.37 in 2.39:
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ė = Ax+Bu−Ax̂−Bu−R(y− ŷ)

ė = A(x− x̂−R(Cx−Cx̂))

ė = Ae−RCe

ė = (A−RC)e

(2.40)

this leads to the following lemma:

Lemma 1.(Ogata 2010) The dynamic behavior of the error vector is determined by the eigen-

values of matrix (A−RC)e. If matrix (A−RC)e is a stable matrix the error vector will converge

to zero for any initial error vector e(0). That is, x̂ will converge asymptotically to x regardless of

the values of x̂(0) and x. If the eigenvalues of matrix (A−RC)e are chosen in such a way that the

dynamic behavior of the error vector is asymptotically stable and is adequately fast, then any error

vector will tend to zero (the origin) with an adequate speed.

If the matrix 2.40 is stable, the error vector will converge to zero for any initial error vector

e(0). Then, given the dynamic behavior of the error e, the main target is to design a matrix R such

that (A−RC) is stable.

Then, the problem is reduced to design a matrix R such that (A− RC) is stable. The first

approach to design the observer gain matrix is the pole placement method, where the observer gain

matrix is designed in order that the poles of the matrix (A−RC) are placed anywhere in the left side

of the complex plane. Let choose the poles p= [−3, −3, −2] and the solving with a mathematical

software, in this case MATLAB with the command R = place(A′,C′, p)′ one gets:

Rp =


−2.3077 3.4615

4.4615 −1.6923

0 2

 (2.41)

Where Rp is the gain matrix obtained through the pole placement method. For this only de-

velopment, the simulation example is provided to the reader in order to understand how the state
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Figure 2.3: Diagram Matlab/Simulink

observer works. The simulation was developed in Matlab/Simulink as shown In Fig. 2.3. The input

u is the block labeled as Step and whose behavior is described by:

u =

0 i f t ≤ 0

1 i f t > 0

Initial conditions of the model are [0 0 0] while the initial conditions of the state observer are

[0.15 −0.2 0.2] in order to separate the initial dynamics of both systems and appreciate how the

observer converges to the model dynamics.

The block labeled as Model is an state-space block to simulate linear systems and it was pro-

grammed as 2.33, this is, with C = I in order to compare the measured output vector y with the

estimation of the output vector ŷ. The block Observer_Example is a level-2 S-Function where the

equation 2.37 is programmed, this is the block that contains the observer gain matrix Rp, also it

is provided with the available state variables x1 and x2 in the input vector to be able to estimate

x3. The four blocks left are To Workspace blocks which sends the information to the work space

in Matlab in order to create the graphics. Note the connections for each To Workspace blocks and
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Figure 2.4: Dynamics state variable observer.

particularly in the block e, it is the difference between Model output and the Observer output, i.e.,

the state estimation error e.

Results are depicted in Fig. 2.4, where it is possible to see that x3 has been estimated and the

state observer also give x1 and x2. To compare the dynamics of the state variables x1, x2, and x3

with the estimation x̂1, x̂2, and x̂3 the Fig 2.5 shows both systems where 3̂ estimates correctly x3

which is not available for the observer, this means that based only on two variables states the state

observer can estimate the third one for this system. Finally, the dynamics error is provided in Fig.

2.6, the error e converges asymptotically to zero, in the time 3s it is practical equal to zero.

With this example, the effectiveness of the state observers have been illustrated. However, pole

placement method base its effectiveness on the poles chosen, which are chosen arbitrary. Then,

an advanced method to calculate the observer gain matrix is through optimal quadratic Lyapunov

functions (Chadli et al. 2005). The stability Lyapunov criterion is summarized in Lemma 2.

Lemma 2.(CURRAN 1993) if there exist a real, symmetric, and positive definite matrix P ∈

Rnxn, then:

V(x) := xT Px > 0 (2.42)
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Figure 2.5: Comparison model and observer.

Figure 2.6: Dynamics Error.
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And if:

V̇(x) := ẋT Px+ xT Pẋ < 0 (2.43)

Then, ẋ is asymptotically stable.

The objective in this method is to chose P such that V̇(x)< 0. This gain matrix can be calculated

solving a Linear Matrix Inequalities (LMI) (Boyd et al. 1994).

Stability Lyapunov criterion is applied to system 2.35 in order to design an appropriated ob-

server gain matrix R. Let propose the following Lyapunov function:

V(e) := eT Pe > 0 (2.44)

whose derivative is calculated as:

V̇(e) := ėT Pe+ eT Pė < 0 (2.45)

Substituting 2.40 in 2.45 one gets:

V̇(e) := eT (A−RC)T Pe+ eT P(A−RC)e < 0

:= eT (AT P−CT RT P)e+ eT (PA−PRC)e < 0

:= eT (AT P−CT RT P+PA−PRC)e < 0

(2.46)

Note that eT e in 2.46 is a quadratic term, hence definite positive. Then, we need to ensure that:

AT P−CT RT P+PA−PRC < 0
(2.47)
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In order to calculate matrix R through LMI technique, the expression 2.47 must be a linear

equation, this is, each term in the expression must to have only one unknown term. Note that RtP

and PR are quadratics terms where both constant matrices are unknown. Then, let define a new

constant matrix Γ = PR:

AT P−CT
Γ

T +PA−ΓC < 0
(2.48)

which can be solved with a computational software as Matlab. Then, solving 2.48 one gets the

following observer gain matrix:

RL


−0.0212 −0.4303

6.0013 1.5661

1.7683 −2.6485

 (2.49)

The state estimation is shown in Fig. 2.7 where x̂1, x̂2 and x̂3 are provided. For this case,

also C = [100;010], then only x1 and x2 are available and the observer state estimates x3. In order

to compare both observers, initial conditions are also chosen as x1(0) = 0.15, x2(0) = −0.2, and

x3(0) = 0.2. Fig. 2.8 illustrate the effectiveness of the observer, x̂1, x̂2, and x̂2 converges asymp-

totically to x1, x2, and x3 practically before to second 1, which is a better performance that the

obtained by pole placement method. To compare the speed of the convergence of both state ob-

servers, state estimation error ep for pole placement and state estimation error eL for Lyapunov are

depicted in Fig. 2.9. The vector eL =
[
eL1 eL2 eL3

]T
where eLi = xi− x̂Li, i = 1,2,3 and the

vector ep =
[
ep1 ep2 ep3

]T
where epi = xi− x̂pi, i = 1,2,3. It can be observed that the Lyapunov

observer has a faster convergence, eL ≈ 0 in time 1.5s. This difference is more evident in the es-

timations in ep1 and ep2 that are the pole placement estimation of the available state variables x1

and x2, note that ep ≈ 0 after time 2.5s. Thus, the observer obtained by the Lyapunov criterion is

more reliable and more efficient than the observer designed by pole placement.
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Figure 2.7: State estimation.

Figure 2.8: State estimation and state variables.
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Figure 2.9: Comparison of dynamics error.

According to the analysis above, in this research the observer gain matrices will be designed

through Lyapunov criterion developing LMIs.

2.2.1 Examples

In this section two examples are given to develop a state observer. First, the observability matrix of

the system is calculated to decide if the observer can be developed. Next, observer gain matrices

are calculated according with the LMI 2.48. Finally, the state estimation is presented to prove the

effectiveness of the method.

Example 1. Consider the following system:
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ẋ =


2 0 0 3

4 −3 −5 2

−2 0 3 −4

1 0 −2 −5

x+


0 1

1 0

2 1

1 0

u

y =

1 0 0 0

0 1 0 0

x

(2.50)

System 2.50 has xi, i = 1, ...,4 state variables of which only x1 and x2 can be measured. Note

that this is an unstable system, which means that produce an unbounded output for a bounded input.

In this simulation the input is a vector u = [1.5 1]T

The target is to design a state observer to estimate x3 and x4. The first step is to prove the

observability of the system in order to know if it is possible to estimate the state variables not

available. The corresponding observability matrix is defined as:


C

CA

CA2

CA3

 (2.51)

whose rank is 4, then the system 2.50 is observable.

Substituting matrices A and C in the LMI developed 2.48 and solving through software, one

gets the following observer gain matrix R:

R =


5.7586 1.3445

5.9464 12.2378

−7.2746 −37.7550

6.1354 9.1000

 (2.52)
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Figure 2.10: State estimation x1 and x2.

Simulation results are shown in Fig. 2.10, Fig.2.11, and Fig. 2.12. Measured state variables

x1 and x2 are compared with the state estimation x̂1 and x̂2 is depicted in Fig. 2.10 where it is

possible to see that unbounded outputs tends to negative infinity. The observer state 2.37 is develop

with only available state variables x1 and x2 but to has a comparison in Fig.2.11 is provided the

estimation x̂3 and also the state variable x3 obtained from the model, x̂3 converges asymptotically

to x3 even if it has an unbounded response to the input u. Finally, the comparison between state

variable x4 and its estimation x̂4 which converges asymptotically is illustrated in Fig. 2.12.

Example 2. In this example a practical system is illustrated with an academical model of an

Aircraft. The aircraft shown in Fig. 2.13 considers only 3 degrees of freedom x, y, and θ. The input

vector u is given by u = [F1 F2]
T . The system is governed by the following differential equations:

mẍ = F1cosθ−F2sinθ− cẋ (2.53)

mÿ = F1sinθ+F2cosθ−mg− cẏ (2.54)

Jθ̈ = rF1 (2.55)
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Figure 2.11: State estimation x3.

Figure 2.12: State estimation x4.
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Figure 2.13: Aircraft.

Transforming the differential equations to an state space model, the dynamics of the system is

described by:

ẋ1 = x2 (2.56)

ẍ2 =
1
m
(U1cosx5−U2sinx5 +mgsinx5− cx2) (2.57)

ẋ3 = x4 (2.58)

ẍ4 =
1
m
(U1sinx5 +U2cosx5 +mgcosx5−mg− cx4) (2.59)

ẋ5 = x6 (2.60)

ẋ6 =
1
J

rU1 (2.61)

Note that this is a nonlinear system, hence due to the linear approach of this research, the space

state model is linearized and presented with A and B matrices as follow:
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A =



0 1 0 0 0 0

0 −c
m 0 0 −g 0

0 0 0 1 0 0

0 0 0 −c
m 0 0

0 0 0 0 0 1

0 0 0 0 0 0


B =



0 0
1
m 0

0 0

0 1
m

0 0
r
J 0


(2.62)

The measured state variable are x1, x3, and x5 so that:

C


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 (2.63)

Proving the observability of the system through its observability matrix which is defined as:



C

CA

CA2

CA3

CA4

CA5


(2.64)

with rank = 6. Then, it is possible to find a observable gain matrix R from the Luenberger

observer 2.37 to estimate the state variables x2, x4, and x6. Consider the LMI 2.48 which is solved

with sedumi in Matlab software. The gain matrix obtained is the next:
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R =



0.8748 0.0000 −3.6768

1.2913 0.0000 −11.0349

0.0000 0.8748 0.0000

0.0000 1.2913 0.0000

3.6768 0.0000 0.8750

1.2256 0.0000 1.2917


(2.65)

The Aircraft is an unstable system, then its state variable gives an unbounded output for a

bounded input, i.e., its state variables tends to infinity. To appreciate the performance of the ob-

server, the input u∈R2 has been controlled through methods that are not part of this research study

to stabilize the system output. Fig 2.14 illustrates the converge of x2 and x̂2 where is shown that the

observer converges before time 10s. Fig. ?? shows the estimation of x4, similar to the estimation

of x2, the convergence occurs before to 10s but, in this case, the stabilization of signal is soft. Fig.

2.16 shows the estimation of x6, this variable is properly estimated until second 12s. Then, the

observer estimates correctly the unavailable state variables. Fig. 2.17 provides the dynamics of

all state variables of the observer xi, i = 1, ...,6 and the model x̂i, i = 1, ...,6, note how all state

converge asymptotically.

2.3 Multi-Agent Systems

In recent years, developers of automatic controllers have paid attention to cooperative control of

multi-agent systems due to the needed of distributed controllers that can synchronize the behavior

of a group of systems for mobile robots, UAVs, satellites, aircraft and other systems that involve a

collective task Ren et al. (2005), Kuriki & Namerikawa (2014), Cai & Huang (2014) the cooperative

control of Multi-agent Systems (MAS) has been widely studied in recent years. Cooperative control

studies the dynamics of multi-agent systems (MAS) linked to each other by a communication graph.

The graph represents the shared information between agents . The objective of cooperative control

is to devise control protocols for the individual agents that guarantee synchronized behavior of the
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Figure 2.14: State Estimation x2.

Figure 2.15: State Estimation x4.
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Figure 2.16: State Estimation x6.

Figure 2.17: Dynamics: model and observer.
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states of all the agents in some prescribed sense.

In general, cooperative control can be divided into three main approaches. The first one focuses

on a physical synchronization between agents, i.e., if there exists a coordinated physical displace-

ment between the agents or not. Thus the cooperative control can be classified in formation control

and non-formation control Ren et al. (2005), respectively. Fig. 2.18 depicts a collection of 6 drones

where the task is a coordinated flight, then it is a formation control of MAS; on the other hand, Fig.

2.19 shows a microgrid where the control target is to maintain continuous and constant production

of the energy generated by the different systems involved. The second one is related to the existence

of a leader agent. If the leader agent exists it is called Leader-following consensus of MAS. The

leader agent acts as a command generator and provide to the follower agents the desired trajectory.

This trajectory can refer to the displacement or any other state variable in the dynamics, g.e., it is

a case of tracking control where the control target is to track the leader, that is why this category

is also called cooperative tracking control (Lewis et al. 2013). If there not exist a leader agent, the

case is called leaderless consensus or average consensus of MAS, and usually, it is related to the

initial condition of the collection of systems Li et al. (2015). The last classification mentioned in

this research is the homogeneous and non-homogeneous MAS, this classification divides the MAS

depending if all the collection of systems has an identical dynamics behavior (homogeneous) or if

at least one of the agents in the collection is different (non-homogeneous) Li et al. (2012), as illus-

trated in Fig. 2.20 and 2.21. Particularly, in this last category, there exists a remarkable difference in

the mathematical model. Represented in space state, Homogeneous MAS is described by the same

A and B since all agents have the same dynamical behavior as in 2.66, while non-homogeneous

MAS are described by different Ai and Bi because agents can be different from each other in the

collection, as presented in 2.67.

ẋi = Axi +Bui, i = 1, ...,N (2.66)

ẋi = Aixi +Biui, i = 1, ...,N (2.67)
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Figure 2.18: A collection of 6 identical drones.

Figure 2.19: A microgrid

Figure 2.20: Homogeneous collection of 6 elements.

Figure 2.21: Heterogeneous collection of 6 elements.
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In order to understand the development of controllers and observers of MAS, broad concepts

and mathematical preliminaries should be understood. This thesis does not delve into much of the

essential concepts and only provides what is necessary for the development of the state estimators

and fault estimator observer-based, which are the main objective of this research.

In this research, graph theory is used to establish the connection between the agents. Then,

general concepts of graph theory are introduced in section Basic Definition and Connectivity with

the intention of clearing the link between algebra and Consensus Control. In this section, main

concepts as nodes, edges, graphs, digraphs, graph Laplacian matrix, and so on are defined in order

to develop system controllers in the First MAS Approach section and the state and fault estimator

in Chapter 3: Materials and Methods. The next section is divided into two different approaches,

leader-following graphs, and leaderless graphs, and each of them has particular definitions and

mathematical preliminaries that are worth to mention. Even if both methods are important for

MAS, pay careful attention to the leader-following case since the fault estimators in Chapter 3 are

designed for this configuration.

2.3.1 Basic Definition and Connectivity

2.3.1.1 Leaderless Graphs

A graph is a pair G =
{

V ,E
}

, with V = {v1,v2, ...,vN} a set of N nodes or vertices, for MAS

applications every node represents an agent or an individual system, and E ⊆ V ×V is the set of

edges or arcs that represents the connection between the agents. Elements of E are all the ordered

pairs
(
vi,v j

)
which is an edge or arc from vi to v j, and it is represented with an arrow with tail at vi

and head at v j, this arrow is also know as edge arrow. Graphs are usually represented by a diagram

that contains all nodes and edges. Basic elements in the graph are depicted in Fig. 2.22 where A)

is a node or agent, B) is a row with tail at vi and head at v j, this is, the row connect the agent i to

the agent j, and C) is a bidirectional row edge which will be explained later.

Each agent vi has a set of incoming edges and a set of outcoming edges, the set of incoming

edges are called neighbors of a node vi and is defined as Nin =
{

v j : (v j,vi) ∈ E
}

, i.e., the set of
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Figure 2.22: Basic elements in the graph.

nodes v j with the edge arrow incoming to vi. The number of neighbors Ni of node vi is equal to its

in-degree. In the opposite way, the set of outcoming edge of a node vi is Nout =
{

v j : (vi,v j) ∈ E
}

,

i.e., the set of nodes v j with edges outcoming from vi. The number of Nout of node vi is defined as

its out-degree.

If the in-degree equals the out-degree for all nodes vi ∈ V the graph is said to be balanced. If(
vi,v j

)
∈E⇒

(
v j,vi

)
the edge row is said to be bidirectional. Associate with each edge

(
v j,vi

)
∈E

a weight ai j > 0 if
(
vi,v j

)
∈ E . A graph is said to be undirected if ai j = a ji,∀i, j, otherwise is an

directed graph or digraph. In the Fig. 2.23 a graph G =
{

V ,E
}

is given, the set of N nodes and E

edges in the graph are the following:

V = {v1,v2,v3,v4,v5,v6}

E = {(v1,v2),(v1,v3),(v2,v1)(v2,v5),(v3,v1),(v3,v4),(v3,v6),(v5,v4),(v6,v3)}
(2.68)

A directed path is a sequence of nodes v0,v1, ...,vr such that (vi,vi+1) ∈ E, i ∈ {0,1, . . . ,r−1}.

Node vi is said to be connected to node v j if there is a directed path from vi to v j. Graph G is said

to be strongly connected if vi , v j are connected for all distinct nodes vi,v j ∈V .

A directed tree is a connected digraph where every node except one, called the root, has in-

degree equal to one. A spanning tree is a directed tree formed by edge arrows that connects all
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Figure 2.23: Graph Example.

Figure 2.24: Spanning tree in red.

the nodes of the graph. A graph is said to have a spanning tree if a subset of the edges forms a

directed tree. In other words, if a graph has a spanning tree means that all agents are reachable

from a common agent. The graphs can contain more than one spanning tree but, in order to reach

the consensus, at least one spanning tree must to exist in the topology. A spanning tree is depicted

in Fig. 2.24 in red where the agent 1 is the root, note that node 1 can reach all agents in the digraph.

It is worth to mention that this spanning tree is not the only one in the graph, with the exception of

the agent 4, any other agent can be considered as the root of an spanning tree.
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Figure 2.25: Leader-following graph example.

2.3.1.2 Leader-Following Graphs

As explained above, there exists MAS that considers a leader agent and this category is studied with

small differences in the graph topology in comparison with the leaderless case explained before. In

this section is explained a detail the graph theory applied to the leader-following case.

For MAS leader-following an augmented graph is defined as G = {V ,E}where V = {v0,v1,v2, ...,vN}

is the set of N + 1 nodes or vertices (agents for MAS applications) and E ⊆ V ×V is the set of

edges which is the set of ordered pairs which express the connection between all agents including

the leader one. Note that E ⊆ E. Without loss of generality, it is common to label the leader agent

as v0, hence in this work the leader agent will be labeled as 0 in the mathematical representations

and in the graphs topologies as is shown in Fig. 2.25. In this theory, leader agent is not affected

by any other follower agent, with this, leader agent can be considered as an a command generator

exosystem that generates the desired target trajectory (Lewis et al. 2013) and then the pair vi,v0

with i = 1,2, ...,N does not exist.

Generally, the leader agent can reach directly just a subset of follower agents. Nevertheless, the

augmented graph G must to contain a spanning tree with the leader node as the root, this means

that there exist a directed path from v0 to vi where i = 1, ..,N, i.e., the information of the leader

node is transmitted to all follower agents directly or indirectly in the graph. In the graph example

in Fig. 2.25 the leader node can reach all follower nodes through multiple directed paths. If there

exist a subset of k 1 ≤ k < N nodes in the graph G with Sk = {n1,n2, ...,nk} and Sk ⊆ N which
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Figure 2.26: Isolation of agents in the graph topology.

do not have access to the leader information, this implies that the set Sk do not have access to the

information of the other follower agents either, this set Sk is isolated of the rest of the agents and

the synchronization to the leader agent cannot be achieved. This is depicted in Fig. 2.26.

Therefore, all the works that deal with Leader-following consensus need the following assump-

tion:

Assumption 2. (Lewis et al. 2013) The augmented graph G contains a spanning tree with the

leader node as the root. In other words, there is a directed path (not necessarily unique) from the

leader node to every follower node.

2.3.2 Mathematical Preliminaries

Given the edge weights ai j, a graph can be represented by an adjacency or connectivity matrix

A = [ai j] with weights ai j > 0 if
(
v j,vi

)
∈ E and ai j = 0 otherwise. Note that aii = 0, i.e., there is

not self loops. Therefore, most researches define the graph as G = {V ,E ,A} since every graph is

related to an adjacency matrix A . A graph without self loops is called a simple graph and if there

exist at least one loop, it is called a multi-graph. To illustrate those definitions, In Fig. 2.27 two

different graphs with leader-following configuration are presented, a) depicts a multigraph with self

loops in nodes 3 and 4 while b) depicts a simple graph, as any other presented before, without self
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Figure 2.27: Illustration of multigraphs and simple graphs.

loops.

Define the weighted in-degree of node vi as the i-th row sum of A :

di =
N

∑
j=1

ai j (2.69)

and the weighted out-degree of node vi as the i-th column sum of A as:

do
i =

N

∑
j=1

a ji (2.70)

Note that row sum is expressed with ai j and the column sum with a ji.

If the weights ai j = a = ji, ∀i, j, i.e., the graph is undirected, the adjacency matrix A is sym-

metric, A=AT . A graph is said to be weight balanced if the weighted in-degree equals the weighted

out-degree for all i, this is the same definition that ai j = 1∀i, j if
(
v j,vi

)
∈ E . Hereinafter, to sim-

plify the examples, all graphs will be weight balanced graphs even if it is not mentioned, i.e., all

weights ai j = 1.

It is define the diagonal in-degree matrix D = diag(di) and the Laplacian matrix L = D−A .

Then, with a given graph as the presented in Fig. 2.23 it is possible to construct the adjacency
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matrix A , the diagonal in-degree matrix D, and the Laplacian matrix L. Particularly, the Laplacian

matrix is of a big interest since this one contains all the communication informacion in the graph

and it has many useful properties that can be fully studied by the reader in (Lewis et al. 2013) and

which leads to Lemma 1 and Lemma 2.

Lemma 1. Under the assumption that eigenvalues of (L) are ordered as λ1 < λ2 <,...,< λN ,

Laplacian matrix L has rank N-1, i.e., λ0 is nonrepeated and all nonzero eigenvalues have positive

real parts if and only if graph G has a spanning tree (Li et al. 2009, 2011).

Graphs are unnecessary if the Laplacian matrix is given. However, in the rest of this thesis, both

graphs and matrices are given in order to detail all examples and developments. From Fig. 2.23,

matrices A , D and L are given:

A =



0 1 1 0 0 0

1 0 0 0 0 0

1 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0


, D =



2 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, L =



2 −1 −1 0 0 0

−1 1 0 0 0 0

−1 0 2 0 0 −1

0 0 −1 2 −1 0

0 −1 0 0 1 0

0 0 −1 0 0 1


Eigenvalues λi of Laplacian matrix L are calculated in order to show that Theorem 1 is fulfill.

λ5 = 0 and is not repited and the rest of eigenvalues λi are positive definite.
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λ1 =2

λ2 =1

λ3 =3.4142

λ4 =2

λ5 =0

λ6 =0.5858

(2.71)

For the leader-following case, given an augmented graph G = {V ,E ,A} it is necessary to

define how the follower agents are connected to the leader. In practice, only a subset of follower

agents has direct information from the leader, then, if the agent i is connected to the leader, there

exist an edge (v0,vi) with a weight gi and it is said that the node is pinned to the leader, thus, weights

gi are known as pinning gains (Duan et al. 2009, Li et al. 2009, Wang & Chen 2002). Remember

that the leader agent is an exosystem whose is not affected by any other agent, then, (vi,v0) 6∈ E

i.e., the node v0 does not receive information

Remark. Only for graphs in the leader-following case, the weights ai j define the connections

between the follower agents and the weights gi define the connection between the subset of follower

agents that can observe the leader.

It is defined as the weighted diagonal pinning gain matrix:

G = diag(gi) (2.72)

The matrix 2.72 is related with the leader connection and leads to the Lemma 2.

Lemma 2. Under the Assumption 2, the eigenvalues λi of (L+G) have positive real parts

(Lewis et al. 2013).

The adjacency matrix A , the diagonal in-degree matrix D, the Laplacian matrix L, and the
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diagonal pinning gain matrix G are obtained for the graph depicted in Fig. 2.25 which contains a

leader node labeled as 0. By inspection in the graph, there exists a spanning tree with the leader

agent as the root, with this, Assumption 2 is fulfilled.

A =



0 0 0 1 0 0

0 0 0 0 0 1

0 1 0 1 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0


, D =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



, L =



1 0 0 −1 0 0

0 1 0 0 0 −1

0 −1 2 −1 0 0

−1 0 0 1 0 0

0 0 −1 0 1 0

0 −1 0 0 0 1


, G =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


calculating the eigenvalues of (L+G) one gets:

λ1 = 1

λ2 = 2

λ3 = 2.6180

λ4 = 0.3820

λ5 = 2.6180

λ6 = 0.3820

(2.73)

Lemma 2 is satisfied with all eigenvalues λi > 0.
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2.3.3 Examples

In this section, the main concepts studied in the theoretical framework are illustrated through mul-

tiple examples. The examples will serve to understand the basics of graph theory that will be used

during the development of this research.

Examples 1− 4 are related to leaderless case, the adjacency matrix A , the diagonal in-degree

matrix diag(di), and the Laplacian matrix L are calculated based on the graph topology given. Ex-

amples 5 and 6 are concerned to leader-following case, then, the adjacency matrix A , the diagonal

in-degree matrix diag(di), the Laplacian matrix L, and the diagonal pinning gain matrix diag(gi)

are calculated. For all examples, the main objective is the construction of the corresponding matri-

ces and the analysis of the Lemma 1 and Lemma 2, which are fulfilled in all cases presented.

Example 1. In this example, a directed graph or digraph with 3 agents labeled as 1, 2, and 3 is

depicted in Fig 2.28, this topology is a leaderless case where the condition of having a spanning tree

is accomplished. By inspection, one can realize that Adjacency matrix A ∈ R3, in-degree matrix

D ∈ R3, and Laplacian matrix L ∈ R3 since three agents are involved.

According to A = [ai j] with weights ai j = 1 if
(
v j,vi

)
∈E and ai j = 0 otherwise, 2.70 and with

L = D−A , one can define:

A =


0 0 1

1 0 1

1 1 0

 , D =


1 0 0

0 2 0

0 0 2

 , L =


1 0 −1

−1 2 −1

−1 −1 2


In order to prove Lemma 1, the eigenvalues of Laplacian matrix L are given:

λ1 = 2

λ2 = 0

λ3 = 3
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Figure 2.28: 3 agents in leaderless configuration and with directed communication.

Where is possible to see that all eigenvalues are positive definite.

Example 2. Similar to Example 1, the graph in 2.29 consider only 3 agents in a leaderless

consensus case. In this graph topology, the communication between agents is undirected, i.e., for

all agents the communication is bidirectional. Then, it is supossed that A = AT . Further, A ∈ R3,

D ∈ R3, L ∈ R3, and all eigenvalues are positive definite.

A =


0 1 1

1 0 1

1 1 0

 , D =


2 0 0

0 2 0

0 0 2

 , L =


2 −1 −1

−1 2 −1

−1 −1 2


Calculating its eigenvalues:

λ1 = 0

λ2 = 3

λ3 = 3

Then, Lemma 1 is fulfilled.

Example 3. Fig. 2.30 shows a directed graph with 6 agents in a leaderless configuration. It is

evident that A ∈ R6, D ∈ R6, L ∈ R6, and all eigenvalues are positive definite.
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Figure 2.29: 3 agents in leaderless configuration and with undirected communication.

A =



0 0 1 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


, D =



1 0 0 0 0 0

0 4 0 0 0 0

0 0 4 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, L =



1 0 −1 0 0 0

−1 4 −1 −1 −1 0

−1 −1 4 −1 0 −1

0 −1 −1 2 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1


Eigenvalues of L are:

λ1 =4.4142

λ2 =0

λ3 =1.5858

λ4 =1

λ5 =5.2361

λ6 =0.7639

Example 4. Fig. 2.31 depicted an almost identical graph than Example 3. Note that the

only difference lies in the connection between agent 1 and agent 2, while Example 3 considers a

directed connection (v1,v2), this graph consider a bidirectional connection (v1,v2) = (v2,v1). With
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Figure 2.30: 6 agents in leaderless configuration and with directed communication.

the above, Fig. 2.31 is an undirected graph that satisfies A = AT . Adjacency matrix A , in-degree

matrix D and Laplacian matrix L are given:

A =



0 1 1 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


, D =



2 0 0 0 0 0

0 4 0 0 0 0

0 0 4 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, L =



2 −1 −1 0 0 0

−1 4 −1 −1 −1 0

−1 −1 4 −1 0 −1

0 −1 −1 2 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1


Note the difference in the eigenvalues between Example 3 and Example 4 whose change sig-

nificantly changing only one edge.
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Figure 2.31: 6 agents in leaderless configuration and with undirected communication.

λ1 =0

λ2 =0.7639

λ3 =1.2679

λ4 =2

λ5 =4.7321

λ6 =5.2361

Example 5. In order to clarify the configuration Leader-following for MAS, in this example,

an undirected graph with a leader agent and 3 follower agents is depicted in Fig. 2.32. Without loss

generality, it is usual to label the leader agent as 0 since it can be considered as an exosystem and its

communication edges or arcs are not part of the adjacency matrix A , instead, it is represented by the

pinning gain matrix G. Note that, only agent 1 and agent 2 has a directed communication with the



2.3. MULTI-AGENT SYSTEMS 53

Figure 2.32: Leader agent and 3 followers with undirected communication.

leader agent although the condition of the existence of an spanning tree is fulfill, the leader agent 0

can reach any other agent in the topology directly or indirectly by following the edge arrows. With

2.72, one gets:

A =


0 1 1

1 0 1

1 1 0

 , D =


2 0 0

0 2 0

0 0 2

 , L =


2 −1 −1

−1 2 −1

−1 −1 2

 , G =


1 0 0

0 1 0

0 0 0


According with Lemma 2, all eigenvalues of (L+G) are definite positive only if there exist a

spanning tree. Since this condition is fulfill, it is possible to that Lemma 2 is accomplished when

the eigenvalues are calculated:

λ1 =0.5858

λ2 =3.4142

λ3 =4
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Example 6. Finally, this example presents a directed graph with a Leader-following topology.

This particular graph is called formation graph due to that descending hierarchy in which the agent

i only receives information from its immediate neighbor, the agent j, with a larger hierarchy. Note

that only agents 1 and 2 have directed communication with the leader. Following, matrices A , D, L

and G are provided:

A =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0



, D =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



, L =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0

0 −1 0 1 0 0 0 0

0 0 −1 0 1 0 0 0

0 0 −1 0 0 1 0 0

0 0 0 −1 0 0 1 0

0 0 0 −1 0 0 0 1



, G =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Eigenvalues of (L+G) are given in 2.74. Note that Lemma 2 is accomplished.
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Figure 2.33: Leader agent and 8 followers with directed communication

λ1 = 1

λ2 = 1

λ3 = 1

λ4 = 1

λ5 = 1

λ6 = 1

λ7 = 1

λ8 = 1

(2.74)

2.3.4 First MAS Approach

2.3.4.1 Problem Statement and Motivation

Consider a system of N +1 identical agents with a linear dynamic, there is a group of N followers

and one leader. The dynamic of i-th follower agents can be represented as:

ẋi = Axi +Bui i = 0, ...,N (2.75)
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Where xi ∈ Rn is the state, ui ∈ Rm is the control input. Matrices A and B are assumed to be

stabilizable and detectable. Considering without loss of generality that the leader agent is indexed

by 0 and the follower agents indexed by 1, . . . ,N, the control input of the leader is u0 = 0. It is

necessary a Lemma and an assumption in order to design a control law for the system 2.75.

Lemma 1. Laplacian matrix L has rank N − 1, i.e., λ1 = 0 is nonrepeated and all nonzero

eigenvalues have positive real parts if and only if graph G has a spanning tree (Lewis et al. 2013).

Assumption 1. The Graph topology G contains a directed spanning tree with a leader as the

root node. In other words, there is a directed path (not necessarily unique) from the leader to the N

followers (Li et al. 2015).

Leader node in the Laplacian matrix L has in-degree equal to zero. Then, if the leader node is

indexed as node 0 and followers as nodes 1, . . . ,N, L can be partitioned as:

L =

 0 01xN

L2 L1


Where L2 ∈ RNx1 and L1 ∈ RNxN . In this representation of L, it will be more easy work only

with the L1 term which determines the topology of the followers. Remaining that leader agent has

input control zero, the needed information to develop the controller is in L1.

Leader-follower consensus is reached when:

lim
t→∞

(xi(t)− x0(t)) = 0, ∀i ∈ N (2.76)

Where xi(t) is the state of the i -th agent and x0(t) is the leader node (previously indexed as 0

agent). Thus, the main objective of the research is to design a local distributed controller ui for all

follower nodes such that 2.76 be accomplished.

In order to design ui for cooperative control works Li et al. (2010) and Zhang et al. (2011)

has been proposed a static consensus protocol that use the information between the agents and the

leader node, given as:
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ui = cK
N

∑
j=1

ai j(xi− x j) i = 1, ...,N

Where c > 0 is the common coupling weight among neighboring, K ∈ Rmxn is the feedback

gain matrix, and ai j is the weight for edge (v j,vi) of the adjacency matrix A associated with G. It

is worth to mention that if the weights ai j are not relevant, then ai j is set equal to 1 if (v j,vi) ∈ E.

It is simple to see that the task consists in to find a c > 0 and a K ∈Rsxn that satisfies 2.76. One

way to solve this problem is with the following lemma.

Lemma 2 (Li et al. (2010), Zhang et al. (2011)): Under assumption 1. The N agents described

by (1) reach leader-follower consensus under the protocol (4) with K = −BT P−1, c ≤ 1
mini∈NRe(λi)

where λi,i = 1, . . . ,N, are the nonzero eigenvalues of L1 and P > 0 is a solution to the linear matrix

inequality (LMI) proposed:

AP+PAT −2BB < 0 (2.77)

Nevertheless, to find the c > 0 that satisfices 2.76 it is necessary that every single agent has

global information in order to know mini∈NRe(λi) that corresponds to the minimum real part of the

eigenvalues of the Laplacian matrix L1.

To solve this limitation in the static protocol, some works as Li, Ren, Liu & Fu (2013), Li, Ren,

Liu & Xie (2013) propose an adaptative consensus protocol that has the advantage that there exists

a dynamical coupling gain. In these works, a fully distributed consensus protocol is given, in other

words, the control input ui, i = 1, . . . ,N depends on only agents dynamics and the information of

the neighbors for topologies that consider undirected graphs. All the same, there is not a protocol

developed for directed graph topologies that overcome that limitation.

Now, in order to solve the problem on fully distributed consensus protocol for directed graph, a

novel adaptative protocol is presented in this research. This protocol uses only information of the

state variables of the local agent and the neighbor’s information considering a zero input for the

leader agent.
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2.3.4.2 Distributed Adaptative Consensus Protocol Design

This development example proposes a distributed consensus protocol that use only information of

the local agent and the neighbors without global information of the Laplacian matrix for the system

(1). The protocol includes time-varying coupling weights and a monotonically increasing function

as follows:

ui = ci pi(ξ
T
i P−1

ξi)Kξi

ċi = ξ
T
i P−1

ξi

(2.78)

Where ci is the dynamical coupling weight with ci(0) ≤ 1, pi(ξ
T
i P−1ξi) is a monotonically

increasing function determined later with p(w)≤ 1 for w > 0, P > 0 is a solution of the LMI 2.77,

and K ∈ Rmxn and Γ ∈ Rnxn both are matrices gain determined in Theorem 1.

The advantage of this control input is the time-varying coupling weights ci(t). This dynamical

ci(t) is calculated in base of the consensus error ξi and is independent of any eigenvalue of the

Laplacian matrix. In order to defined every factor in the consensus protocol the next Theorem is

given:

Theorem 1. Under the assumption 1, the leader-follower consensus problem for the system

(1) can be solved through the adaptative protocol (6) with K = −BT P−1,Γ = P−1BBT P−1, and

pi(ξ
T
i P−1ξi) = (1+ξT

i P−1ξi)
3, where P > 0 is a solution of the LMI 2.77. Moreover, ci converges

to some finite steady-state value.

Proof: See reference Li et al. (2015).

Remark 1. LMI 2.77 allows to determine the matrices K and Γ but both can be solved by

Riccati equation AT Q+QA+ I−QBBT Q = 0 as in Zhang et al. (2011), Tuna (2008), Hengster-

Movric et al. (2013) with K =−BT Q and Γ = QBBT Q and the monotonically increasing function
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pi(ξ
T
i P−1ξi) with the same methodology that in this research for protocol (6).

Remark 2. This research provides a solution for consensus problem in fully distributed and

adaptative way in the sense that every single agent has a control input ui that depends only on the

local agent and the information of the neighbors and it is independent of the global information of

the Laplacian matrix. Although there exist similar works as Li, Ren, Liu & Fu (2013), Li, Ren,

Liu & Xie (2013), this research focuses on solving the problem for the case of directed graph

topologies.

Remark 3. Protocol 2.78 provide an extra freedom for design with respect to Li, Ren, Liu & Fu

(2013), Li, Ren, Liu & Xie (2013) because of the implementation of pi. This factor is dynamical

and converges asymptotically to 1 while consensus error ξi converges asymptotically to zero. Then,

this extra factor ensures that when the consensus is reached this factor does not affect the behavior

of the system and the protocol is reduced to consensus protocols in Li, Ren, Liu & Fu (2013), Li,

Ren, Liu & Xie (2013).

2.3.4.3 Simulation Example

For a graphical analyze one example is provided. The topology is shown in Fig. 2.34 where is pos-

sible to see that the leader node is the node indexed by 0 and only the node 1 can obtain information

of it, also exist 5 followers that should reach the consensus only through node 1 information. This

topology satisfies assumption 1.

Since Li et al. (2015) mentions that if the weights ai j are not relevant, then ai j is set equal to 1

if (v j,vi) ∈ E, for this example the weight is a set of 1. Then, the error consensus ξi is a difference

of the state variables of the nodes xi and x j, that is xi− x j.

The system dynamic for this example is given by 2.79:
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A =


0 1 0

0 0 1

0 0 0

 ; B =


0

0

1

 (2.79)

Figure 2.34: Topology for the example.

Every factor of the input control ui is determined by Theorem 1 solving the LMI 2.77 with

Matlab toolbox SeDuMi. To satisfies the characteristics of protocol 2.78 the initial state ci(0) was

randomly chosen between (1,3). Fig. 2.35 shows the consensus error ξi = xi−x j where the error of

every state variable of the xi agent converges asymptotically to zero, thus the consensus is reached.

Fig. 2.36 depicts the dynamical coupling gain ci that satisfies the condition ci(0)≤ 1, it is possible

to see that ci converges to finite steady-state values. Finally, Fig. 2.37 proves the asseveration in

remark 3, that pi converges asymptotically to 1.
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Figure 2.35: Consensus error xi− x0
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Figure 2.36: Adaptative coupling gain ci
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Figure 2.37: Values for pi for each agent i

Simulation Conclusions. The consensus protocol proposed in this development example al-

lows to reach the consensus for linear multi-agents systems with directed topologies. This is an

advantage over Li, Ren, Liu & Fu (2013), Li, Ren, Liu & Xie (2013) that proposed the adaptative

consensus protocol only for undirected graph topologies. In comparison with the static protocol

Li et al. (2010), Zhang et al. (2011) the adaptative protocol does not use any global information

and for that reason it is properly a fully distributed consensus protocol. The main objective of the

distributed control is the independence of the controller of every single agent but some proposed

protocols depend of the Laplacian matrix and is worth to mention that the Laplacian matrix is ob-

tained in base of the global information and then then the controller is not completely independent.



Chapter 3

Linear fault estimation of MAS

In recent years, cooperative control for multi-agent systems (MAS) has been widely studied as

a solution for problems where multiple systems have to collaborate to reach a common goal. In

this scenario, an individual control law for each one of the agents cannot provide a satisfactory

performance of the global control task, e.g., distributed cooperative control of microgrids Bidram,

Davoudi, Lewis & Guerrero (2013), Bidram, Davoudi, Lewis & Qu (2013), Nasirian et al. (2014),

cooperative formation control of autonomous underwater vehicles Das et al. (2016), formation con-

trol of unmanned aerial vehicles (UAVs) Kuriki & Namerikawa (2014), cooperative control of ma-

nipulators Li et al. (2016), to mention a few. Among different topics of MAS, the leader-following,

also called cooperative tracking control, has become the most popular consensus problem. In this

case, the leader sends information to the agents, then, the controller tries to reduce the error so

all follower agents can track the desired trajectory generated by the leader Lewis et al. (2013). In

the literature, there is extensive research about this problem, for example, in Wang & Wu (2012) a

leader-following formation control for a second-order nonlinear multi-agent system under fixed and

switching topologies is exposed. Authors in Cai & Huang (2014) present a leader-following control

for multiple spacecraft systems. In Zhang et al. (2014), an adaptive technique for fault estimation

is proposed. The works of Ma et al. (2015) and Zhao et al. (2017) present two different approaches

for second-order multi-agent systems, one is an optimal strategy and the other is an event-triggered

strategy for the communication graph, respectively. However, few works are dedicated to detect



65

and isolate faults for MAS.

The purpose of a fault diagnosis system is to generate an alarm when a fault occurs as well as

to detect, locate, and estimate the magnitude of the faulty element. Few works have been proposed

for fault diagnosis in MAS. In particular, for leader-following cooperative control problems, in Shi

et al. (2014) a bank of optimal robust observers to detect and isolate actuator faults was designed.

In Chen & Song (2015) an actuator fault detection module for directed graphs was developed, in Li

(2015) a controller for multi-agent systems subject to loss of actuator effectiveness with an adaptive

observer was proposed. Furthermore, few works related to fault estimation have been reported, e.g.,

in Zhou et al. (2014), fault tolerant cooperative control is achieved with a sliding mode observer

to estimate faults. In Ye et al. (2017), an adaptive observer to estimate the states and bias faults

with multiple leaders is presented, an unknown input observer (UIO) is designed in Wu et al.

(2018) to estimate states and faults for directed graphs in presence of exosystem disturbances, and

Yang et al. (2018) presents a distributed adaptive fault estimation algorithm for undirected graphs.

Nevertheless, to the best of the authors’ knowledge, proportional-integrative (PI) Distributed Fault

Estimation Observers (DFEO) Zhang et al. (2015) have not been fully explored for fault estimation

in leader-following applications.

In this chapter, a Proportional-Integral Distributed Fault Estimation Observer (PI-DFEO) is pro-

posed for MAS with a distributed approach. In order to reach the main goal, it is considered that

the control law of each agent depends on its own information and the information provided by its

neighbors. In order to show the connection between the agents, a graph topology is considered.

Moreover, the PI-DFEO estimates both, the system states and actuator faults. The proposed ap-

proach can be applied to directed and indirect graphs, according to graph theory. Furthermore, to

guarantee robustness against measurement noise and disturbances a H∞ criterion was considered.

As a result, sufficient conditions to compute the observer gains are given by a set of feasible Linear

Matrix Inequalities. Finally, the performance of the proposed method is tested through numerical

examples of formation control.
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3.1 Problem statement

Consider a collection of N+1 identical agents where the follower nodes are represented with faults

through the following space state model:

ẋi(t) = Axi(t)+Bui(t)+H fi(t);

yi(t) =Cxi(t);
(3.1)

where i = 1, . . . ,N, indicates the i-th agent in the multi-agent system, xi(t) ∈ Rn is the state vector,

ui(t) ∈ Rm is the control input vector, fi(t) ∈ Rr represents the system component or actuator fault

vector, and yi(t) ∈ Rp is the output vector. The pair (A,C) is assumed to be observable and matrix

H is constant with appropriate dimensions.

Without loss of generality, the leader agent labeled with the subscript 0 is modeled as follows:

ẋ0(t) = Ax0(t). (3.2)

Remark 1. Note that the leader agent does not consider any input, this holds for the standard

multi-agent systems theory and for the purpose of this work. However, it is worth to mention that

a controller for the leader agent can be developed independently applying any other single agent

control theory (Lewis et al. 2013).

For the development of this work, the following assumption and lemma are considered:

Assumption 1. In order that all follower agents can track the state of the leader, the graph must

have a spanning tree with the leader node as the root, i.e., the leader node can send information

directly or indirectly to all follower agents (Lewis et al. 2013).

Lemma 1. Under Assumption 1, the matrix (L+G) is nonsingular. In addition, this matrix is

positive defined (Lewis et al. 2013).
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In order to estimate states, the following distributed observer is proposed:

˙̂xi(t) = Ax̂i(t)+Bui(t)−Rζi(t)+H f̂i(t);

ŷi(t) =Cx̂i(t);

f̂i(t) =−ΓF
(

ζi(t)+
∫ t

t f

ζi(t)dt
)

;

(3.3)

where i = 1, . . . ,N, x̂i(t) ∈ Rn is the estimated state, ŷi(t) ∈ Rp is the estimated output, ζi(t) ∈ Rq

is the relative output estimation error of the i-th agent in the communication graph defined later,

R ∈ Rn×q is the observer gain matrix to be designed, and f̂i(t) is the estimated fault. To deal

with fault estimation, a distributed PI fault estimator f̂i(t) is proposed where the relative output

estimation error ζi is used. Additionally, an integral term of ζi is added that allows the observer to

have a faster convergence to the fault, F ∈ Rr×p is the fault estimator gain matrix to be designed,

and matrix Γ = ΓT > 0 is the learning rate. Note that t f indicates the time when the fault occurs.

Then, the problem is reformulated to find the gain matrices R and F , such that the estimation

error between system (3.1) and observer (3.3) tends asymptotically to zero, for all follower agents.

Communication between follower agents and the leader agent is established through the pinning

gain matrix G defined in Section 3.

3.2 Main contribution

The main idea of this Chapter is to estimate states and faults of the follower agents in a MAS using

the observer proposed in (3.3). Then, according to the MAS theory, the relative output estimation

error ζi, which expresses the information exchanged between the agents, is defined as (Lewis et al.
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2013):

ζi(t) =
N

∑
j=1

ai j

((
ŷi(t)− yi(t)

)
−
(
ŷ j(t)− y j(t)

))
+gi

((
ŷi(t)− yi(t)

)
−
(
ŷ0(t)− y0(t)

))
; (3.4)

i = 1, ...,N;

where ŷi(t) is the observer output of the i-th agent, ŷ j(t) is the observer output of the j-th agent who

constitute the neighbors of the agent i in the collection of systems, gi represents the nodes pinned

to the leader node.

From Remark 1, since the leader agent can be treated independently and an observer for the

leader agent is not needed, it is reasonable to assume for the MAS model that the output estimation

error of the leader agent is equal to zero, i.e., ŷ0(t)−y0(t) = 0. Then, the relative output estimation

error is reduced to the following expression:

ζi(t) =
N

∑
j=1

ai j

((
ŷi(t)− yi(t)

)
−
(
ŷ j(t)− y j(t)

))
+gi

(
ŷi(t)− yi(t)

)
; i = 1, ...,N; (3.5)

In order to develop the DFEO, it is necessary to define the dynamic error for both, state estima-

tion and fault estimation. The state estimation error vector for the i-th agent is defined as,

exi(t) = x̂i(t)− xi(t); (3.6)
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and then, the dynamic state estimation error is given by,

ėxi(t) = ˙̂xi(t)− ẋi(t);

= Ax̂i(t)+Bui(t)+H ˆfi(t)−Rζi(t)−Axi(t)

−Bui(t)−H fi(t);

= A(x̂i(t)− xi(t))+H( f̂i(t)− fi(t))−Rζi(t);

(3.7)

where the relative output estimation error ζi can be expressed as:

ζi(t) =
N

∑
j=1

ai j(Cx̂i(t))−
N

∑
j=1

ai j(Cxi(t))

−
N

∑
j=1

ai j(Cx̂ j(t))+
N

∑
j=1

ai j(Cx j(t))+gi(Cx̂i(t))

−gi(Cxi(t));

(3.8)

then, from equation (2.70):

ζi(t) =diCx̂i(t)−diCxi(t)−
[
ai1 . . . aiN

]
Cx̂1(t)

...

Cx̂N(t)



+
[
ai1 . . . aiN

]
Cx1(t)

...

CxN(t)


+giCx̂i(t)−giCxi(t).

(3.9)

Lets define the global vectors ζ(t) =
[
ζT

1 (t), . . . ,ζ
T
N(t)

]T
∈ RqN , x(t) =

[
xT

1 (t), . . . ,x
T
N(t)

]T
∈ RnN ,

ex(t) =
[
eT

x1
(t), . . . ,eT

xN
(t)
]T
∈ RnN . And, given the adjacency matrix A = [ai j], the diagonal in-

degree matrix D = diag{di}, the diagonal pinning gain matrix G = diag{gi}, and the Laplacian
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matrix defined as L = D−A , then one gets:

ζ(t) =(D⊗C)x̂(t)− (D⊗C)x(t)− (A⊗C)x̂(t)

+(A⊗C)x(t)+(G⊗C)x̂(t)

− (G⊗C)x(t);

=((D−A +G)⊗C)(x̂(t)− x(t));

=((L+G)⊗C)ex(t).

(3.10)

Then, the global distributed state estimation dynamic error for the whole MAS is given by:

ėx(t) =(IN⊗A)ex(t)+(IN⊗H)e f (t)

− (IN⊗R)[((L+G)⊗C)ex(t)];

=(IN⊗A− (L+G)⊗RC)ex(t)

+(IN⊗H)e f (t).

(3.11)

The fault estimation error vector for the i-th agent is defined as,

e fi(t) = f̂i(t)− fi(t); (3.12)

where the fault estimation dynamic error can be obtained with,

ė fi(t) =
˙̂fi(t)− ḟi(t);

=−ΓF(ζi(t)+ ζ̇i(t))− ḟi(t).
(3.13)

Let ḟ (t) =
[

ḟ T
1 (t), . . . , ḟ T

N (t)
]T
∈ RnN be the global fault vector. Then, the global distributed

fault estimation dynamic error for the whole MAS is given by:

ė f (t) =−((L+G)⊗ΓFC)(ex(t)+ ėx(t))− ḟ (t). (3.14)
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If only faults with small variations are considered, therefore, it is assumed that ḟ ≈ 0 (Estrada

et al. 2015), which leads to:

ė f (t) =−((L+G)⊗ΓFC)(ex(t)+ ėx(t)). (3.15)

Now, the H∞ criterion Hu et al. (2016) that is included in the developed DFEO in order to

provide robustness to the observer is presented as:

Jrd := V̇e(t)+ J1 < 0; (3.16)

where Ve(t) is the candidate Lyapunov function, J1 = eT
x (t)ex(t)− γ2eT

f (t)e f (t), γ > 0 is a scalar

value. J1 can be expressed in matrix form:

J1 =
[
eT

x (t) eT
f (t)
]I 0

0 −γ2I

ex(t)

e f (t)

 . (3.17)

Theorem 1. If there exist a symmetric positive definite matrix P∈Rn×n, and matrices Y ∈Rn×p

and F ∈ Rr×p that satisfy: IN⊗ (AT P+PA)−Λ Φ

∗ φ

< 0; (3.18)

HT P = FC; (3.19)

where Λ = (L+G)⊗ (YC)+(L+G)T ⊗CTY T )− I, Φ = IN⊗PH− (L+G)T ⊗ (AT PH +PH)+

(L+G)2T ⊗ (CTY T H), φ =−(L+G)T ⊗ (HT PH)− (L+G)⊗ (HT PH)− γ2I. The observer gain

matrix R can be calculated by R = P−1Y .

Proof. Consider the following Lyapunov function:

Ve(t) = eT
x (t)(IN⊗P)ex(t)+ e f (t)T (IN⊗Γ

−1)e f (t); (3.20)
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Then, by calculating its derivative, the following is obtained:

V̇e(t) =ėT
x (t)(IN⊗P)ex(t)+ eT

x (t)(IN⊗P)ėx(t)+ ėT
f (t)(IN⊗Γ

−1)e f (t)+ eT
f (t)(IN⊗Γ

−1)ė f (t).

(3.21)

Substituting equations (3.11) and (3.15) in (3.21):

V̇e(t) =
(

eT
x (t)(IN⊗A− (L+G)⊗RC)T + eT

f (t)(IN⊗H)T
)
(IN⊗P)ex(t)+

eT
x (t)(IN⊗P)

(
(IN⊗A− (L+G)⊗RC)ex(t)+(IN⊗H)e f (t)

)
−
(
(ex(t)+

ėx(t))T ((L+G)T ⊗ΓFC)T
)
(IN⊗Γ

−1)e f (t)− e f (t)T (IN⊗Γ
−1)
(
((L+G)⊗ΓFC)(ex(t)

+ ėx(t))
)

=eT
x (t)(IN⊗AT P− (L+G)T ⊗CT RT P)ex(t)+ eT

f (t)(IN⊗HT P)ex(t)+ eT
x (t)(IN⊗PA−

(L+G)⊗PRC)ex(t)+ eT
x (t)(IN⊗PH)e f (t)− (ex(t)+ ėx(t))T ((L+G)T ⊗ (CT FT ))e f (t)

− eT
f (t)((L+G)⊗ (FC))(ex(t)+ ėx(t)).

(3.22)

with Y = PR and HT P = FC. From Theorem 1, equation (3.22) can be transformed to:

V̇e(t) =eT
x (t)(IN⊗ (AT P+PA)− (L+G)T ⊗CTY T − (L+G)⊗YC)ex(t)+2eT

x (t)(IN⊗PH)e f (t)

−2eT
x (t)

(
(L+G)T ⊗PH

)
e f (t)−2ėT

x (t)
(
(L+G)T ⊗PH

)
e f (t)︸ ︷︷ ︸

ex

,

(3.23)

where:

ex =−2
(

eT
x (t)(IN⊗A− (L+G)⊗RC)T + eT

f (t)(IN⊗H)T
)(

(L+G)T ⊗PH
)

e f (t)

=−2eT
x (t)

(
(L+G)T ⊗AT PH− (L+G)2T ⊗CTY T H

)
e f (t)

−2eT
f (t)
(
(L+G)T ⊗HT PH

)
e f (t)

(3.24)



3.3. SIMULATION EXAMPLES 73

Then, by substituting (3.24) in (3.23)

V̇e(t) =eT
x (t)(IN⊗ (AT P+PA)− (L+G)T ⊗CTY T − (L+G)⊗YC)ex(t)+2eT

x (t)(IN⊗PH−

(L+G)T ⊗ (PH +AT PH)+(L+G)2T ⊗CTY T H)e f (t)

−2eT
f (t)((L+G)T ⊗HT PH)e f (t)

(3.25)

Then, J1 term from (3.16) is added to (3.25) to apply the H∞ criterion:

J̇rd =eT
x (t)(IN⊗ (AT P+PA)− (L+G)T ⊗CTY T − (L+G)⊗YC)ex(t)+2eT

x (t)(IN⊗PH−

(L+G)T ⊗ (PH +AT PH)+(L+G)2T ⊗CTY T H)e f (t)−

2eT
f (t)((L+G)T ⊗HT PH)e f (t)+ eT

x (t)ex(t)− γ
2eT

f (t)e f (t)

(3.26)

which leads to the matrix representation provided in Theorem 1. This completes the proof.

Remark. From Section 3, undirected graphs consider the matrix (L+G) = (L+G)T that is an

special case of directed graphs. Theorem 1 can consider (L+G) = (L+G)T or (L+G) 6= (L+G)T

indistinctly. Then, Theorem 1 can deals with directed and undirected graphs topologies.

3.3 Simulation Examples

In this section, two simulation examples are given to illustrate the effectiveness of the theoretical

results.

Example 1. The system proposed in Zhang et al. (2015) is considered. The problem consist

on a collection of 5 identical aircrafts. The leader agent and 4 follower agents, with the directed

communication topology depicted in Fig. 3.1 (formation graph).
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Figure 3.1: Communication graph for the numerical example.

Each aircraft is modeled in a state space representation as :

A =


−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208

0.1002 0.3681 −0.7070 1.4200

0 0 1 0

 ; (3.27)

B =


0.4422 0.1761

3.5446 −7.5922

−5.5200 4.4900

0 0

 ; C =


1 0 0 0

0 1 0 0

0 0 1 0

 ; (3.28)

where the state vector is defined as xi(t) =
[
vh(t) vv(t) q(t) θ(t)

]T
and whose elements are

horizontal velocity, vertical velocity, pitch angle, and pitch rate, respectively. The input vector

includes collective pitch control and longitudinal cyclic pitch control.

The adjacency matrix A , the in-degree matrix D, the Laplacian matrix L and the pinning gain

matrix G are obtained from Fig. 3.1,

A =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 ;D =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 ;
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L =


0 0 0 0

0 0 0 0

−1 0 1 0

0 −1 0 1

 ;G =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ;

As can be seen from Fig. 3.1, a spanning tree in the graph proposed exist and all eigenvalues of

(L+G) are 1, i.e. (L+G)> 0 which fulfills Lemma 1.

For this numerical experiment, the following notation is used to define all vectors qi(t) =[
qi,b1(t) qi,b2(t) . . . qi,bn(t)

]T
where a is the agent label and b is the vector element. Then,

as each agent has only two actuators, faults in agents 2 and 4 can be represented as f2(t) =[
f2,1(t) f2,2(t)

]T
and f4(t) =

[
f4,1(t) f4,2(t)

]T
, respectively. It is assumed that faults occur

simultaneously in agents 2 and 4 as it is presented below:

f2,1(t) =



0 0s≤ t < 2s;

0.2u2,1 2s≤ t < 4s;

0 4s≤ t < 6s;

−0.2u2,1 6s≤ t < 8s;

0 8s≤ t < 12s;

(3.29)

f4,1(t) =



0 0s≤ t < 2s;

0.05u4,1 2s≤ t < 4s;

0 4s≤ t < 6s;

−0.05u4,1 6s≤ t < 8s;

0 8s≤ t < 12s;

(3.30)

Which means a 20% degradation of the pitch control u2,1 when 2s≤ t < 4s and -20% when 6s≤ t <
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8s for agent 2. And, a 5% degradation of the pitch control u4,1 when 2s≤ t < 4s and -5% when 6s≤

t < 8s for agent 4. Initial conditions were randomly chosen between 0− 3 in order to be nonzero

values, then initial conditions are given: agent1 =
[
1.2653 1.9672 2.0362 1.9664

]T
, agent2 =[

2.7472 0.1071 2.2732 0.5136
]T

, agent3 =
[
2.3766 2.5474 2.2294 2.1181

]T
, and agent4 =[

2.8785 2.8020 1.1767 0.0955
]T

. Defining H = B, and solving Theorem 1, the following con-

stant matrices P, Y , R and F are obtained:

P =


1.2439 0.0126 0.1161 0.3070

0.0126 0.0378 0.0461 0.0349

0.1161 0.0461 0.0862 0.0470

0.3070 0.0349 0.0470 0.1608

 ;

Y =


0.8754 0.1567 0.3070

0.0504 0.0614 0.0782

0.1261 0.0765 0.1178

−0.3325 −0.0399 0.0381

 ;

R =


5.2205 1.1986 1.0049

29.1051 8.5784 6.7898

−13.2428 −3.4711 −2.2591

−14.4876 −3.3858 −2.4964

 ;

F =

−0.0460 −0.1149 −0.2609

0.6444 −0.0780 0.0572

 ;

Γ =

12 3

3 12

 .
The numerical results are presented in the following Figures. Fig. 3.2 presents the fault estima-

tion f̂2,1 of actuator 1 in agent 2 and Fig. 3.3 shows the fault estimation f̂4,1 of actuator 1 in agent 4.
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Figure 3.2: Fault estimation of agent 2.

In both figures, it is possible to see that the estimation converges asymptotically to the fault quickly

even when the dynamics of the fault changes, observe the behavior of the fault estimator after the

seconds 2s, 4s, 6s, and 8s. Finally, Fig. 3.4 show the state estimation error for agents 1-4, where

horizontal velocity xi,1, vertical velocity xi,2, pitch angle xi,3, and pitch rate xi,4, n = 1, ...,4, are

correctly estimated.

Note that state estimation error increase in the presence of faults in times 2s, 4s, 6s, and 8s for

agents 2 and 4 who are the only agents with faults. Nevertheless, the observer is robust enough to

estimate states even with multiple faults as it can be seen in Fig. 3.4.

Example 2. In this section a collection of coupled mass-spring systems are studied (Lewis et al.

2013, p. 97). Each agent is represented by a pair of coupled mass-spring systems as is represented

in Fig. 3.5.

There exist 6 pairs of mass-spring systems in the MAS. Follower agents are represented in

the space-state model as 3.31 and communication between these agents is described, with a direct

topology, in Fig. 3.6. System 3.2 represents the leader dynamic.
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Figure 3.3: Fault estimation of agent 4.

Figure 3.4: State estimation error.
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Figure 3.5: Coupled mass-spring systems.

A =


0 1 0 0

−2.2727 0 0.9190 0

0 0 0 1

1.1111 0 −1.1111 0

 ; B =


0

0.9091

0

0

 ; (3.31)

C =


1 0 0 0

0 1 0 0

0 0 1 0

 ; (3.32)

In this simulation, 5 follower agents are considered, in other words, i = 1, ...,5 and the leader

agent is labeled as 0. The Laplacian matrix L and the pinning matrix G can be calculated through

3.6, then:

(L+G) =



3 −1 −1 0 0

−1 3 −1 0 0

−1 −1 2 0 0

0 0 −1 1 0

0 0 −1 0 1


. (3.33)
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Figure 3.6: Example topology.

The fault induced to the system consists of a deviation of 25 % of the value of the input vector

ui. For this example, actuators faults of agents 4 and 5 are considered since these are further away

from the leader, and therefore from the signal of the desired trajectory, then the complexity to

maintain the desired behavior of these two agents is bigger.

In practice, the initial conditions are chosen according to the initial measured value of the

system states variables (López-Estrada et al. 2016). The initial conditions of the system were

chosen randomly between [0− 2] and the initial conditions of the observer as zero values, so that

there was a discrepancy between both and in order to observe the dynamics of the state estimation

error. Defining H = B, and solving the Theorem 1, the following matrices are obtained P, Y , R and

F :

P =


0.3496 −0.0125 −0.1244 −0.0244

−0.0125 0.1484 −0.0354 0.0000

−0.1244 −0.0354 0.2056 −0.0818

−0.0244 0.0000 −0.0818 0.1727

 ;
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Y =


0.2709 0.0333 −0.0007

−0.0703 0.0757 0.0193

−0.0181 −0.0053 0.3463

0.0267 −0.0152 0.0028

 ;

R =


1.1170 0.1901 1.3912

−0.1795 0.5743 1.0692

0.8398 0.2022 3.4448

0.7102 0.0349 1.8439

 ;

F =
[
−0.0113 0.1349 −0.0322

]
;Γ =

[
7
]
.

The simulation results are presented below. Figures 3.7 and 3.8 illustrate that state estimation

error tends asymptotically to zero. To explain this example, the nomenclature xi,a is used where

i corresponds to the follower agent number and a is the state variable of the agent i. Figure 3.9

shows the convergence between the fault estimated by the observer and the induced fault where it

is assumed that the faults in agent 4 and 5 occur simultaneously in the second 3 of the simulation .

Note that, since the estimation of the fault depends on the relative errors ζi in the estimation of the

states, the estimation of the fault is closer to the induced fault when the state estimation error begin

to stabilize at zero.

In order to illustrate the complexity of work with MAS in the Matlab/Simulink environment, it

is provided the Fig. 3.10. Each agent xi, i = 1, ...,5 needs a linear model in space state representa-

tion, a state estimation observer and a fault estimator module, both were programmed in different

blocks to appreciate each function. The communication in the graph applied though ζi, it is de-

veloped with arrows and Sum blocks and this communication is responsible to have this complex

diagram.
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Figure 3.7: State estimation error of the agents 1-4.

Figure 3.8: State estimation error of the agent 5.



3.3. SIMULATION EXAMPLES 83

Figure 3.9: Fault estimation f4 and f5.

Figure 3.10: Matlab/Simulink scheme.



Chapter 4

Convex Fault Estimation of MAS

4.1 Introduction

As explained before, several papers about multi-agent systems have been elaborated since existing

multiple applications for this approach in the control theory. For example, Zhang et al. (2016)

propose a novel distributed control strategy where switching topologies and disturbance of the sys-

tems are considered. Liu et al. (2016) studied formation tracking problem for multiple vehicles

with a motion planning approach, in this case, the time of synchronization for all agents is preas-

signed according to the task requirements. Zhang et al. (2013) developed observer-based controllers

for event-triggered multi-agent systems, two different focus are presented, a distributed one, and

a centralized one, Zhao et al. (2016) present a distributed observer-based algorithm to solve the

finite-time consensus tracking problem. Further, the settling time can be estimated for second-

order multi-agent systems with this control protocol. Yan et al. (2016) developed a fault detection

filter applied to spring-mass systems using the optimal performance of H∞. Finally, Zhao et al.

(2016) give two algorithms for distributed average computation problem of multiple time-varying

signals, static and adaptive coupling strengths are studied. Most of these works focus their efforts

on developing algorithms to observe or to control the collection of systems interconnected by a

communication graph. Nevertheless, if only a linear multi-agent systems approach is taken into
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account, a lot of information on the mathematical model is lost, due to the natural nonlinearities

present in physical systems, which decreases the performance and robustness of the proposed al-

gorithms. On the other hand, nonlinear theory, which allows describing almost all information of

the mathematical model, involves a high computational cost. Under this analysis, it is introduced

the convex multi-agent systems where multi-models are used to express each agent dynamics. This

approach combines the low computational cost of the linear control theory, and it allows us to

describe all mathematical models, even if nonlinearities are presented.

Multi-agent convex systems have been studied in order to provide solutions for nonlinear dy-

namical models with the advantages of the linear control theory. In this field, Gonzalez & Werner

(2014) proposes a control protocol to deal with the formation control of multi-agent systems with

leader-following configuration using linear fractional transformation; the control methodology is

exposed in Scherer (2001) which is not observer-based. In Chen et al. (2016), it is developed a

robust controller to solve the consensus problem in multi-agent systems where faults and plant

disturbances are studied; in this case, only undirected graphs are considered. Chadli et al. (2016)

designed a fault detection and isolation filter for a class of linear parameter varying (LPV) multi-

agent systems where disturbance and noise signals are present, and sensor fault signals exist. Mes-

bahi & Velni (2017) study leader-following case treating the leader as an external signal (reference

or disturbance), and the control law requires the solution of the Sylvester equation, in this work

systems fault-free are assumed. However, few attention has been paid to fault estimation convex

multi-agent system. (here you can cite FTC or FE if there exist FE observers consensus or leader).

In this work, an algorithm to estimate states and faults for convex MAS is presented where is focus

on the directed graphs in the leader-following case.

In this section, the PI-observer developed in the linear fault estimation section is extended to

convex multi-agent systems in the leader-following configuration. In this case, actuator faults and

sensor noise are included in the dynamics system representation. Finally, a new LMI is developed

where H∞ criterion is used to reduce the sensor noise. In this section, a numerical example is

exposed to prove the effectiveness of this method.
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4.2 Problem Statement

Consider a collection of N+1 identical convex multi-agent systems where follower agents dynam-

ical model in continuous time is given by (4.1):

ẋi(t) =
h

∑
j=1

h j(ξ(t))(A jxi(t)+B jui(t))+H fi(i)

yi(t) =Cx(t)+Fwi(i)

(4.1)

where i = 1, . . . ,N and j = 1, . . . ,h, xi(t) ∈Rn is the state vector, ui(t) ∈Rm is the input vector,

fi(t) ∈ Rr is the actuator fault vector, yi(t) ∈ Rp is the output vector and wi(t) ∈ Rn is the sensor

noise vector. Matrices A and C are assumed to be observable and H and F are constant and real

matrices with appropriated dimensions.

Remark 1. In this mathematical model, subscripts i are used to describe the number of systems

in the network, i.e., there are i = 1, . . . ,N follower agents. On the other hand, subscripts j give

the number of multi-models of each follower agent with j = 1, ...,h, according to convex systems

theory (Guzmán-Rabasa et al. 2019).

In order to estimate states and faults, the following convex distributed observer is proposed:

˙̂xi(t) =
h

∑
j=1

h j(ξ(t))
(
A jx̂i(t)+B jui(t)−R jζi(t)

)
+H f̂i(t);

ŷi(t) =Cx̂i(t);

f̂i(t) =−ΓΦ

(
ζi(t)+

∫ t

t f

ζi(t)dt
)

;

(4.2)

where i = 1, . . . ,N and j = 1, . . . ,h, x̂i(t) ∈Rn is the estimated state, ŷi(t) ∈Rp is the estimated

output, ζi(t) ∈ Rq is the relative output estimation error of the i-th agent in the communication
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graph defined later, R j ∈Rn×q is the observer gain matrix to be designed, and f̂i(t) is the estimated

fault. To deal with fault estimation, a distributed PI fault estimator f̂i(t) is proposed where the

information of relative output estimation error ζi is needed. Additionally, the integral term of ζi is

added to have a faster convergence to the fault. Φ ∈ Rr×p is the fault estimator gain matrix to be

designed, and matrix Γ = ΓT > 0 is the learning rate. Note that t f indicates the time when the fault

occurs.

4.3 State Observer for MAS

To develop a distributed observer, it is necessary to establish a connection between agents, i.e., to

explain how the information is shared between all agents. In this case, the connection is defined by

the relative output estimation error ζi:

ζi(t) =
N

∑
j=1

ai j

((
ŷi(t)− yi(t)

)
−
(
ŷ j(t)− y j(t)

))
+gi

((
ŷi(t)− yi(t)

)
−
(
ŷ0(t)− y0(t)

))
; (4.3)

i = 1, ...,N;

Now, substituting 4.1 and 4.2 in 4.3 and with the assumption ŷ0(t)− y0(t) = 0 (see details in

linear MAS section):

ζi(t) =
N

∑
k=1

aik

((
Cx̂i(t)−Cxi(t)−Fwi(t)

)
−
(
Cx̂k(t)−Cxk(t)−Fwk(t)

))
+gi(Cx̂i(t)−Cxi(t)−Fwi

)
; (4.4)

i = 1, ...,N;
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that can be easily transformed to:

ζi(t) =di(Cx̂i(t)−Cxi(t)−Fwi(t))−
[
ai1 . . . aiN

]
Cx̂1(t)−Cx1(t)−Fw1(t)

...

Cx̂N(t)−CxN(t)−FwN(t)


+gi(Cx̂i(t)−Cxi(t)−Fwi(t)).

(4.5)

with the matrices A = [aik], D = diag(di), and G = diag(gi) one gets:

ζi(t) = DCx̂i(t)−DCxi(t)−DFwi(t)−ACx̂i(t)+ACxi(t)+AFwi(t)+GCx̂i(t)−GCxi(t)

−GFwi(t)

= DC(x̂i(t)− xi(t))−AC(x̂i(t)− xi(t))− (D−A)Fwi(t)+GC(x̂i(t)− xi(t))

−GFwi(t)

(4.6)

with exi(t) = x̂i(t)− xi(t) and the Laplacian matrix L = D−A :

ζi(t) =(L+G)Cexi(t)− (L+G)Fwi(t) (4.7)

In order to express the complete state estimation error vector ex(t) and the sensor noise vector

w(t) for all agents in the network, vectors ex(t)=
[
eT

x1
(t), . . . ,eT

xN
(t)
]T
∈RnN , w(t)=

[
wT

1 (t), . . . ,w
T
N(t)

]T
∈

RnN , and ζ(t) =
[
ζT

1 (t), . . . ,ζ
T
N(t)

]T
∈ RqN are defined. Then, global relative output estimation er-

ror ζ is expressed as:

ζ(t) =(L+G)⊗Cex(t)− (L+G)⊗Fw(t) (4.8)
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The observer is developed to estimate states and faults, with this target, state estimation error

exi(t) and fault estimation error e fi(t) must to converge asymptotically to zero. Let define the

dynamics of the estimation errors:

ėxi(t) = ˙̂xi(t)− ẋi(t) (4.9)

ė fi(t) =
˙̂fi(t)− ḟi(t) (4.10)

then, the scheduling function are not required to describe the dynamical error and if it is substi-

tuted 4.1 and 4.2 in 4.9, one gets:

ėxi(t) = A jx̂i(t)+B jui(t)+H f̂i(t)−R jζi(t)−A jxi(t)−B jui(t)−H fi(t)

= A jexi(t)+He fi(t)−R jζi(t)
(4.11)

where, substituting 4.8 in 4.11, the global state estimation error is given by:

ėx(t) = (IN⊗A j)ex(t)+(IN⊗H)e f (t)−R j((L+G)⊗Cex(t)− (L+G)⊗Fw(t))

= (IN⊗A j− (L+G)⊗R jC)ex(t)+(IN⊗H)e f (t)+((L+G)⊗R jF)w(t)
(4.12)

developing the fault estimation error e fi it is substituted 4.2 in 4.10:

ė fi =−ΓΦ(ζi + ζ̇i)− ḟi (4.13)

where it is assumed that f̂i = 0, i.e., dynamical faults are not considered to be estimated. Never-

theless, even when this restriction is not satisfied, it is possible to reconstruct time varying signals

with slow variation (Chadli et al. 2013). Then, the global fault estimation error is given by substi-
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tution 4.8 in 4.13:

ė f (t) =−ΓΦ((L+G)⊗Cex(t)− (L+G)⊗Fw(t))−ΓΦ((L+G)⊗Cėx(t)− (L+G)⊗Fẇ(t))

(4.14)

same small variation assumption is considered for the dynamical sensor noise ẇ(t) = 0 to ob-

tain:

ė f =−((L+G)⊗ΓΦC)ex(t)+((L+G)⊗ΓΦF)w(t)− ((L+G)⊗ΓΦC)ėx (4.15)

following the methodology proposed in the linear distributed observer, the H∞ criterion is de-

fined:

where, Ve(t) is the candidate Lyapunov function, J1 = eT (t)e(t)− γ2wT (t)w(t), γ > 0 is a scalar

value where:

Jrd := V̇e(t)+ J1 < 0; (4.16)

where e(t) =
[
ex(t) e f (t)

]T

Then, J1 can be expressed in matrix form:

J1 =
[
eT

x (t) eT
f (t) wT (t)

]
I 0 0

0 I 0

0 0 −γ2I




ex(t)

e f (t)

w(t)

 . (4.17)

Theorem 2. If there exist a symmetric positive definite matrix P∈Rnxn, and matrices Yj ∈Rnxp

and Φ ∈ Rrxp that satisfy conditions 4.18 and 4.19:
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
IN⊗ (AT

j P+PA j)− (L+G)T ⊗CTY T
j − (L+G)⊗YjC+ I Π (L+G)⊗YjC

∗ Ξ Ψ

∗ ∗ −γ2I

< 0; (4.18)

HT P = ΦC; (4.19)

where Π = −(L+G)T ⊗ (PH +AT
j PH)+ (L+G)2T ⊗CTY T

j H + IN ⊗PH, Ξ = −(L+G)T ⊗

HT PH−(L+G)⊗HT PH, and Ψ=(L+G)⊗HT P−(L+G)2⊗HTYjC .The PI observer converges

asymptotically to the states and faults with the observer gain matrix R j = P−1Yj.

Proof. Consider the following Lyapunov function candidate:

Ve(t) = eT
x (t)(IN⊗P)ex(t)+ e f (t)T (IN⊗Γ

−1)e f (t); (4.20)

whose derivative is:

V̇e(t) =ėT
x (t)(IN⊗P)ex(t)+ eT

x (t)(IN⊗P)ėx(t)

+ ėT
f (t)(IN⊗Γ

−1)e f (t)+ eT
f (t)(IN⊗Γ

−1)ė f (t).
(4.21)

Remark 2. Lyapunov functions 3.20 and 4.20 are identical since this equation allows us to

work with directed and undirected graphs, as it was demonstrated in the linear section. However,

the difference between both approaches can be noticed in the next development.

Now, to provide clearer development, state estimation error ex and fault estimation error e f in

4.21 are treated separately. First, state estimation part of the Lyapunov function is calculated:
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V̇ex(t) = ėT
x (t)(IN⊗P)ex(t)+ eT

x (t)(IN⊗P)ėx(t)

=
(

eT
x (t)(IN⊗A j− (L+G)⊗R jC)T + eT

f (t)(IN⊗H)T +wT (t)((L+G)⊗R jF)T
)
(IN⊗P)

ex(t)+ eT
x (t)(IN⊗P)

(
(IN⊗A j− (L+G)⊗R jC)ex(t)+(IN⊗H)e f (t)+((L+G)⊗R jF)

w(t)
)

= eT
x (t)(IN⊗AT

j P− (L+G)T ⊗CT RT
j P)ex(t)+ eT

f (t)(IN⊗HT P)ex(t)+wT (t)((L+G)T⊗

FT RT
j P)ex(t)+ eT

x (t)(IN⊗PA j− (L+G)⊗PR jC)ex(t)+ eT
x (t)(IN⊗PH)e f (t)+ eT

x (t)

((L+G)⊗PR jF)w(t)

(4.22)

that can be transformed to:

V̇ex(t) = eT
x (t)(IN⊗AT

j P− (L+G)T ⊗CT RT
j P)ex(t)+2eT

f (t)(IN⊗HT P)ex(t)+2wT (t)((L+G)T⊗

FT RT
j P)ex(t)+ eT

x (t)(IN⊗PA j− (L+G)⊗PR jC)ex(t)

= eT
x (t)(IN⊗ (AT

j P+PA j)− (L+G)T ⊗CT RT
j P− (L+G)⊗PR jC)ex(t)+2eT

f (t)(IN⊗HT P)

ex(t)+2wT (t)((L+G)T ⊗FT RT
j P)ex(t)

(4.23)

The second part of the Lyapunov function, which is concerned with the fault estimation is

calculated as follow:
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V̇e f (t) = ėT
f (t)(IN⊗Γ

−1)e f (t)+ eT
f (t)(IN⊗Γ

−1)ė f (t)

=−eT
x (t)((L+G)T ⊗CT

Φ
T )e f (t)+wT (t)((L+G)T ⊗FT

Φ
T )e f (t)− ėT

x (t)((L+G)T⊗

CT
Φ

T )e f (t)− eT
f (t)((L+G)⊗ΦC)ex(t)+ eT

f (t)((L+G)⊗ΦF)w(t)− eT
f (t)((L+G)⊗

ΦC)ėx(t)

(4.24)

which also can be transformed to:

V̇e f (t) =−2eT
x (t)((L+G)T ⊗CT

Φ
T )e f (t)+2wT (t)((L+G)T ⊗FT

Φ
T )e f (t)−2ėT

x (t)((L+G)T⊗

CT
Φ

T )e f (t)

(4.25)

where:

−2ėT
x (t)((L+G)T ⊗CT

Φ
T )e f (t) =

−2
((

eT
x (t)(IN⊗A j− (L+G)⊗R jC)T + eT

f (t)(IN⊗H)T +wT (t)((L+G)⊗

R jF)T)((L+G)T ⊗CT
Φ

T )e f (t)
)
=

−2
(

eT
x (t)((L+G)T ⊗AT

j CT
Φ

T − (L+G)2T ⊗CT RT
j CT

Φ
T )e f (t)+ eT

f (t)((L+G)T ⊗HTCT
Φ

T )

e f (t)+wT (t)((L+G)2T ⊗FT RT
j CT

Φ
T )e f (t)

)
=

−2eT
x (t)((L+G)T ⊗AT

j CT
Φ

T − (L+G)2T ⊗CT RT
j CT

Φ
T )e f (t)−2eT

f (t)((L+G)T ⊗HTCT
Φ

T )

e f (t)−2wT (t)((L+G)2T ⊗FT RT
j CT

Φ
T )e f (t)

(4.26)

Therefore:
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V̇e f (t) =−2eT
x (t)((L+G)T ⊗CT

Φ
T )e f (t)+2wT (t)((L+G)T ⊗FT

Φ
T )e f (t)−2eT

x (t)((L+G)T⊗

AT
j CT

Φ
T − (L+G)2T ⊗CT RT

j CT
Φ

T )e f (t)−2eT
f (t)((L+G)T ⊗HTCT

Φ
T )e f (t)

−2wT (t)((L+G)2T ⊗FT RT
j CT

Φ
T )e f (t)

=−2eT
x (t)((L+G)T ⊗ (CT

Φ
T +AT

j CT
Φ

T ))− (L+G)2T ⊗CT RT
j CT

Φ
T )e f (t)+2wT (t)

((L+G)T ⊗FT
Φ

T − (L+G)2T ⊗FT RT
j CT

Φ
T )e f (t)−2eT

f (t)((L+G)T ⊗HTCT
Φ

T )e f (t)

(4.27)

In order to satisfy Theorem 2, following restriction must be fulfilled:

F =C, (4.28)

this means, that noise matrix F and output matrix C must to be the same to develop a feasible

LMI. Further, with 4.19 and PR j = Yj, one gets:

V̇ex(t) = eT
x (t)(IN⊗ (AT

j P+PA j)− (L+G)T ⊗CTY T
j − (L+G)⊗YjC)ex(t)+2eT

x (t)(−(L+G)T⊗

(PH +AT
j PH))+(L+G)2T ⊗CTY T

j H + IN⊗PH)e f (t)+2wT (t)((L+G)T ⊗CTY T
j )ex(t)+

2wT (t)((L+G)T ⊗PH− (L+G)2T ⊗CTY T
j H)e f (t)+ eT

f (t)(−(L+G)T ⊗HT PH− (L+G)

⊗HT PH)e f (t)

(4.29)

Note that, from 4.27:
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−2eT
f ((L+G)T ⊗HT PH)e f =

− eT
f ((L+G)T ⊗HT PH)e f − eT

f ((L+G)⊗HT PH)e f =

eT
f (−(L+G)T ⊗HT PH− (L+G)⊗HT PH)e f

(4.30)

Finally, according to 4.16, HJrd is completed as follow:

V̇ex(t) = eT
x (t)(IN⊗ (AT

j P+PA j)− (L+G)T ⊗CTY T
j − (L+G)⊗YjC)ex(t)+2eT

x (t)(−(L+G)T⊗

(PH +AT
j PH))+(L+G)2T ⊗CTY T

j H + IN⊗PH)e f (t)+2wT (t)((L+G)T ⊗CTY T
j )ex(t)+

2wT (t)((L+G)T ⊗PH− (L+G)2T ⊗CTY T
j H)e f (t)+ eT

f (t)(−(L+G)T ⊗HT PH− (L+G)

⊗HT PH)e f (t)+ eT (t)e(t)− γ
2wT (t)w(t)

(4.31)

Which leads to the LMI in 4.18. This ends the proof.

4.4 Numerical Example

In this section, a numerical example is provided to illustrate the theoretical results. The system

proposed for this approach is described in 4.32. Note that this system has only two state variables,

of which only the first state variable is measurable. The observer must estimate the second state

variable and the actuator faults. For this simulation example, only three follower agents are con-

sidered in the graph topology labeled as 1, 2, and 3. Agents 1 and 2 have direct communication

with the leader agent labeled as 0. Agent 3 is the only agent without direct communication with

the leader but exists a spanning tree, according to Lewis et al. (2013), explained in detail in sec-

tion 2.3 Multi-Agent Systems. The simulation results of the PI observer are compared with the

proportional observer version which is the most common observer.
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The communication graph is depicted in Fig. 4.1

Figure 4.1: Communication graph for the numerical example.

A =

−4 2.5+ρ

4.5 −4

 ;B =

1.5

3

 ; C =
[
1 0

]
; (4.32)

where ρ is the nonlinear parameter in the convex system. In this example ρ = 0.35∗ sin(t)+0.45.

Then, for the nature of the signal wave described, ρmax = 0.8 and ρmin = 0.1. Linear multi-models

for the system presented in 4.32 are obtained by substituting ρmax and ρmin as is presented in 4.33:

A1 =

−4 3.3

4.5 −4


A2 =

−4 2.6

4.5 −4

 (4.33)

Weighting functions, related to the nonlinearities, are presented in 4.34. Note that, ρ is an

element that is calculated online in the simulation according to the dynamic presented in 4.32.

Solving Theorem 2, gain matrices are obtained for linear multi-models. Constant matrix P,

and gain matrix Ri are presented following:
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h1(ξ(t)) =
ρ−ρmin

ρmax−ρmin

h2(ξ(t)) =
ρmin−ρ

ρmax−ρmin

(4.34)

P =

 0.1150 −0.0356

−0.0356 0.0178

 ; (4.35)

R1 =

−0.2731

−0.1448

 ; (4.36)

R2 =

−0.6046

−0.3361

 ; (4.37)

(4.38)

Remark. Note that nonlinear model 4.32 is transformed to the two linear models 4.33. Then,

we obtain two gain matrices R1 and R2.

The three follower agents has induced actuator faults as is presented below. In the expression

ui,n, i represents the agent label and n is the state variable.

f1(t) =

0.5u1,1 0s≤ t < 12s;

0 12s≤ t < 18s;
(4.39)

f2(t) =


0 0s≤ t < 5s;

0.5u2,1 5s≤ t < 14s;

0 14s≤ t < 18s;

(4.40)



98 4. CONVEX FAULT ESTIMATION OF MAS

f3(t) =


0 0s≤ t < 2s;

0.5u3,1 2s≤ t < 9s;

0 9s≤ t < 18s;

(4.41)

Simulation results are presented in the next figures. Figure 4.2 presents estimation error for

Agent 1, xPI:1,1 and xPI:1,2 depicts the estimation error of the PI observer for state variable 1 and

state variable 2, respectively. On the other hand, xP:1,1 and xP:1,2 shows the estimation error of the

Proportional observer. The difference between both observer is that the PI converges to zero even

in the presence of faults while the proportional one is several affected by the presence of faults

in times 2s, 5s, 9s, and 14s. Figure 4.3 shows the dynamic of the state estimation error of the

agent 2. xPI:21 is the state estimation error of the state variable 1 with the PI observer, xPI:22 is the

state estimation error of the state variable 2 with the PI observer, and xP:21 and xP:22 are the state

estimation error of the state variable 1 and 2 with the proportional observer, respectively. Figure

4.4 depicts the state estimation error of the agent 3 comparing the PI observer and the proportional

observer. Realize that the three agents’ faults affect the estimation of the observer for all agents.

This can be seen in all figures in the times 2s, 5s, 9s, 12s, and 14s that is the times where there

exists a change in the fault dynamic.

Fault estimation of the Agent 1 is shown in Fig.4.5, where few differences between both ob-

servers can be seen. In this case, the importance of the example is to appreciate the peaks in the

times 2s, 5s, 9s, and 14s which is the times where the faults f2 and f3 change abruptly, these faults

affect all the estimation because of the distributed approach. Fig. Fault estimation of f2 in the Agent

2 is depicted in 4.6 the convergence time to the fault is very similar for both observer, however, the

fault estimation of the PI observer is closer to the real fault. Finally, in Fig. 4.7 it is possible to see

the performance of both observers. PI observer estimates closer the fault and the peaks are present

when the fault dynamic change abruptly.
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Figure 4.2: State estimation error and ρ.

Figure 4.3: State estimation error and ρ.
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Figure 4.4: State estimation error and ρ.

Figure 4.5: State estimation error and ρ.
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Figure 4.6: State estimation error and ρ.

Figure 4.7: State estimation error and ρ.



Chapter 5

Conclusions

5.1 Conclusions

Regarding linear strategy and according to the results presented in Chapter 3, the proposed linear

PI observer for leader-following applications estimates efficiently the actuator faults in multiple

follower agents in the MAS. In this case, the learning rate in the fault estimator Γ was chosen

heuristically, since there is not an established methodology to select an optimal value. Therefore,

the observer was tuned with appropriated dimensions of Γ. Furthermore, the graphs can be in-

distinctly directed or undirected because the Laplacian matrix does not have to be symmetric in

Theorem 1, which means that bidirectional or directed communication between the agents is sup-

ported. In practical applications, the connectivity involve economic financing, then reducing the

edges means a cost reduction as long as the MAS is functional. Therefore, directed graphs should

be used when the bidirectional communication is not required for the application. So that, Theorem

1 allows to develop state and fault estimation with reduced costs in applications when it is possible

to use directed graphs. On the other hand, the linear observer developed considers only faults with

small variations are considered besides the operation region is limited to the linearized model.

Regarding convex strategy, this approach solves the region limitation in the linear observer. This

convex PI observer can estimate states and fault in nonlinear systems modeled as convex systems,
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as it was illustrated before. Further, this estimator is robust to output noise (sensor noise) since the

noise vector w(t) is taking into account in the development of the Theorem 2. However, similar to

the linear approach, faults and noise are assumed to have only small variations.

This research is focused on the observer design and does not integrate a control algorithm for

the MAS.

Other important conclusions of this research work are listed below:

• MAS systems allow developing a distributed consensus protocol with the aim of the coordi-

nation of multiple systems working together to reach objectives that can not be achieved by

itself.

• MAS is a field of techniques and approaches that should be carefully studied to choose a

viable method for the research purpose.

• Convex models offer two crucial advantages in the design of fault diagnosis and fault-tolerant

control systems; one is the representation of nonlinear systems without loss of information

and the possibility of extending techniques developed for linear systems to nonlinear systems.

• This work will provide contributions in the field of multi-agent systems using a convex model

that represents the system throughout the region of work.

Regardless of the limitations that this research presents, the general objective and specific objec-

tives of this research were satisfactorily achieved. Two observers were developed whose efficiency

has been proven; both provide to the reader a general theorem (Theorem 1 and Theorem 2) for

any system with a feasible solution. A detailed mathematical development is provided for both

observers, and simulation examples are given to illustrate the theoretical results.

Future works should study advanced techniques in order to provide a solution which deals with

dynamical faults ḟ and dynamical noise ẇ. Likewise, the performance in Theorem 1 and Theorem

2 was not studied, then methods to allocate the poles in a specific region on the left side of the

complex plane should be explored to compare the solutions provided in this research and to find
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better estimations of the faults and the states. Further, due to the multiple systems involve in the

solution of the LMIs proposed, it is reasonable to study a poly-quadratic Lyapunov function in

order to get better results for both approaches.

Publications

The results of these thesis are summarized in the following publications:

• Conference paper "Observador Proporcional-Integral para Sistemas Multi-Agentes Líder-

Seguidor" submitted and accepted to "3ra Jornada de Ciencia y Tecnología Aplicada" (3a

JoCyTecA) in the "Centro Nacional de Investigación y Desarrollo Tecnológico" (CENIDET).

• JCR paper "Distributed Fault Estimation of Multi-Agent Systems using a Proportional-Integral

Observer: A Leader-Following Application" submitted to the International Journal of Ap-

plied Mathematics and Computer Science (AMCS), that is in the "under view" status. The

first review was satisfactory: acceptable with "minor reviews".

• Paper in development "Distributed Fault Estimation of convex Multi-Agent Systems for

Leader-Following configuration". The target is to submit the paper to the IET Journal of

Control Theory and Applications that publishes high-quality papers on original, theoreti-

cal and experimental research and development in the area of systems and control
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