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I 

 

Resumen 
 

 

En la actualidad, las técnicas de computación inteligentes son utilizadas para la resolución de 

diferentes problemas con el objetivo de aminorar la carga de trabajo de las personas y obtener 

precisión en los resultados. Estas son utilizadas con gran éxito para determinar el diagnóstico de 

riesgo en diferentes áreas para con ello pronosticar alguna situación de contingencia en un tiempo 

determinado y con ello poder actuar a tiempo. 

 

Una de las áreas de interés para la aplicación de los sistemas inteligentes es el área médica, 

por ello, el presente trabajo de tesis se propone un nuevo modelo hibrido neuronal difuso para 

proporcionar un diagnóstico médico preciso y a tiempo basado en la presión arterial del paciente, 

en donde se propone utilizar redes neuronales artificiales, las cuales realizan el aprendizaje de 

diferentes comportamientos basado en información del paciente como lo son factores de riesgo y 

lecturas de la presión arterial además el uso de sistemas de inferencia difusa los cuales ayudan a 

proporcionar las clasificaciones del estado de salud del paciente. 

 

Para disminuir los errores en este tipo de aplicaciones, es de gran importancia utilizar 

algoritmos de optimización, los cuales nos ayudan a encontrar aquellos parámetros con los que se 

obtengan los mejores resultados, es por esto que para lograr la precisión en el modelo propuesto, 

se optimiza cada uno de los módulos propuestos en el modelo utilizando diferentes algoritmos bio-

inspirados, con el fin de realizar una comparativa en los resultados obtenidos y determinar con 

cuál de estos se obtiene un resultado   al momento de proporcionar el diagnóstico correspondiente. 

 

Otra forma de mejorar los resultados obtenidos mediante los algoritmos bio-inspirados es 

realizar alguna modificación, en este caso se toma el algoritmo que proporciona mayor error en 

los resultados y se hace un ajuste dinámico de parámetros utilizando sistemas difusos, el cual es 

probado con diferentes casos de estudio para probar y poder determinar si hay una mejora en los 

resultados obtenidos. 

  



 

II 

 

Abstract 
 

 

 

Nowadays, soft computing techniques are used to solve different problems with the aim of 

reducing people's workload and obtaining precision in the results. These are used with great 

success to determine the risk diagnosis in different areas in order to forecast any contingency 

situation in a given time and thus be able to act on time. 

 

One of the areas of interest for the application of soft computing systems is the medical area, 

therefore, this thesis work proposes a new neuro-fuzzy hybrid model to provide a precise and 

timely medical diagnosis based on the patient's blood pressure, where it is proposed to use artificial 

neural networks, which perform the learning of different behaviors based on patient information 

such as risk factors and blood pressure readings, in addition to the use of fuzzy inference systems 

which help to provide the classifications of the health status of  patient. 

 

To reduce errors in this type of application, it is very important to use optimization algorithms, 

which help us to find those parameters with which the best results are obtained, that is why to 

achieve precision in the proposed model, each one of the modules proposed in the model is 

optimized using different bio-inspired algorithms, in order to make a comparison in the results 

obtained and determine with which of these a result is obtained when providing the corresponding 

diagnosis. 

 

Another way to improve the results obtained through the bio-inspired algorithms is to make 

some modification, in this case the algorithm that provides the greatest error in the results is taken 

and a dynamic parameter adjustment is made using fuzzy systems, which tested with different 

cases study to test and determine if there is an improvement in the results obtained.  
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Chapter 1. Introduction 
 

 

Currently, hypertension represents a huge public health problem worldwide. Investigations 

determined that 10.4 million people die each year from this condition [1], [2], and according to the 

World Health Organization  (WHO) estimates the prevalence of hypertension is 1.13 billion people 

and that by 2025, it will increase between 15% and 20%, being about 1.5 billion people  [3], [4]. 

In Mexico, this problem is no different, in 2016 the National Survey of Health and Nutrition 

of  Half Way establishes that one in four adults suffers from hypertension, which corresponds to 

25.5% of the population, with approximately 40% being unaware of having said disease, only 30% 

of patients who know that it have hypertension are controlled and the other 30% of the population 

know that they are sick, but are not controlled [5]. 

In these times where the COVID-19 pandemic afflicts us, it is of utmost importance to take 

care of the health of the population and to have good control of hypertension, because people with 

this comorbidity are the ones that affect them in a great way sickness, leading even to death [6], 

[7]. Hybrid intelligent systems have been presented with different applications to be excellent tools 

for solving complex problems [8]–[10], since this can use more than two soft computing 

techniques to solve the same problem, and with this reduces computational complexity. 

Soft computing is defined as a set of methods that is designed to emulate one or more aspects 

of biological or social systems, to reproduce knowledge. For this thesis work, artificial neural 

networks are used, which are inspired by the human biological neuron and fuzzy inference 

systems, which allow expert systems to reason with uncertainty, as the people do naturally.  

The main goal of this research is to create a hybrid neuronal model to perform the trend 

analysis of complex systems behavior and thus provide a risk diagnosis, this, using artificial neural 

network and fuzzy system, in addition to using bio-inspired algorithms to improve model 

performance . 

 

As specific goals, the following are listed: 

 

• Model the trend of behavior in complex systems through a neuro-fuzzy model. 

• Implement a neural model to know risk behavior in complex systems.  
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• Develop Interval Type-2 Fuzzy Systems for classification. 

• Carry out a comparison of results of Type-1 and Interval Type-2 fuzzy inference systems. 

• Optimize all neuro-fuzzy hybrid model proposed. 

The justification for this work is based on the fact that the proposed model provides an 

accurate and timely diagnosis of the risk of an extraordinary event occurring based on the 

information provided, to prevent contingency situations. For this reason, hybrid intelligent systems 

are applied because they improve their efficiency and reduce the complexity of the problem to be 

solved in the proposed model. 

 

Soft computing has been used for the diagnosis of different illness, which are described as 

follows: 

 

For the detection of malignant melanoma Warsi et. al. [11] propose a new method where 

dermatoscopic image characteristics are extracted, called multi-direction 3D color texture feature. 

For this detection, a backpropagation multilayer neural network classifier was used. The proposed 

method is tested with the PH2 data set, with the neural network classifier accuracy of 97.5% was 

obtained.  

D. Sejdinović et al. [12] use an artificial neural network for the classification of prediabetes 

and type 2 diabetes in patients. As input, the information about the Fasting Plasma Glucose (FPG) 

and a blood test called HbA1c are used, and as output, the classification of the patient health stage 

is obtained, that is, if it is a healthy patient, if it has prediabetes or Type 2 diabetes. Different tests 

are performed in which 94.1% accuracy is obtained in the classification of prediabetes, while in 

the classification of type 2 diabetes an accuracy of 93.3% was obtained. 

For the detection of lung diseases, Varela and Melin [13] propose the use of different soft 

computing techniques. To carry out the study, they use x-ray images that segment and apply a 

process of extraction of texture characteristics to be able to classify the different diseases. Said 

classification is carried out using a neural network, with which good results are obtained. 

Nour et al. [14] propose an intelligent method based on convolutional neural networks for the 

detection of COVID-19. For this, x-ray images of the thorax are used and what is sought is to 

extract distinctive characteristics to determine the disease. With the extracted characteristics, they 

feed machine learning algorithms such as the nearest k-neighbor, the support vector machine 
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(SVM), and the decision tree. The result is that the SVM was the algorithm that provided the best 

results with 98.97% precision, 89.39% sensitivity, and 99.75% specificity. 

Because the process of diagnosing prostate cancer can be complex, resulting in Udoh et. al. 

[15] propose the use of an Adaptive Neuro-Fuzzy Inference System (ANFIS) which is given 

different input attributes such as age, pain when urinating, blood in semen, and pelvic pain. As 

result, they determine that they obtain a 95% correct diagnosis. 

 

For this research, a neuro-fuzzy hybrid system is designed to provide a timely diagnosis of the 

risk that a patient has in developing different illness such as hypertension and some cardiovascular 

event based on the behavior of his blood pressure. 

 

This thesis work is structured by chapters, which are briefly described below: 

Chapter 2. State of the art 

In Chapter 2, basic concepts are presented that serve to understand the soft computing 

techniques used to make our model; such as hybrid systems, artificial neural networks, fuzzy logic 

among others. In addition to providing medical definitions to understand the proposed model. 

Chapter 3. Proposed method 

In chapter 3, a detailed explanation of how the problem to be solved was raised is given, 

besides, an explanation is also given of how soft computing techniques were applied to the 

proposed model. 

 

Chapter 4. Study cases  

In Chapter 4, the different study cases carried out are explained, which cover the optimization 

of the different soft computing techniques used to provide the diagnosis based on the blood 

pressure of different patients. 

Chapter 5. Conclusions 

This chapter describes the conclusions reached after having completed the thesis project. 
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Chapter 2. State of the art 
 

 

In this chapter, important concepts are described to understand better the thesis work carried 

out, such as explaining the different soft computing techniques used as well as explaining the 

metaheuristics used to perform optimization. In addition to defining important medical concepts 

such as blood pressure and hypertension, which are concepts that envelop this research. 

 

2.1 Hybrid systems 

 

Hybrid systems are defined as the combination of two or more soft computing techniques to 

solve the same problem and reduce its complexity, aiming to improve the efficiency and power of 

reasoning, as well as the expression of isolated intelligent systems [16]. Initially, the research and 

development of hybrid systems are focused on combining expert systems and neural networks, 

with these different useful applications have been developed. Research on the integration of 

intelligent systems has advanced considerably, and some models and guidelines are beginning to 

emerge for the development of hybrid neural networks and expert systems applications. Today, 

fuzzy logic, genetic algorithms, and case-based reasoning have gained attention individually and 

in combination with other intelligent technologies [17]. 

Hybrid systems with artificial neural networks and fuzzy systems are divided into the 

following categories: 

• Loose and strong coupling of separate neural and fuzzy modules to carry out specific 

functions in a complex system. 

• Expansion of fuzzy control systems to include neural network components. 

• Adjustment of supervised and unsupervised neural networks using fuzzy systems to improve 

performance. 

• Application of fuzzy systems as a modifier of artificial neural networks. 

• Using artificial neural networks to improve fuzzy systems [17]. 
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Below is a brief explanation of the mentioned soft computing techniques. 

2.1.1 Artificial Neural Networks 

 

An artificial neural network is defined as an information processing system that has 

performance characteristics in common with biological neurons. These have been developed as 

generalizations of mathematical models of human cognition or neural biology [18], based on the 

following assumptions:  

1. Information processing occurs in many simple elements called neurons. 

2. Signals are transmitted between neurons through connecting links. 

3. Each connecting link has an associated weight, which, in a typical neural network, 

multiplies the transmitted signal. 

4. Each neuron has an activation function (usually non-linear) applied to its net input 

(sum of the weighted input signals) to determine its output [18]. 

 

2.1.2 Type-1 Fuzzy Systems 

 

Fuzzy logic is a type of logic that involves approximate modes of reasoning instead of exact 

[19].  Aims to give grounds for approximate reasoning using imprecise propositions based on fuzzy 

set theory [20].  Fuzzy logic is a theory that has been implemented in the scientific-technical field 

and which is extremely useful if it wants a certain device (machine, program, application, etc.) to 

“think” as it would the human mind. Fuzzy logic is fundamentally based on creating a 

mathematical relationship between an element and a certain fuzzy set for a computer to be able to 

make an assessment similar to how humans do. Fuzzy Logic born from the publication "Fuzzy 

Sets" [21] written and proposed by Loftí A. Zadeh for Information and Control journal in the  year 

of 1965, based on the work of J. Lukasiewicz [20] on multivalued logic. Fuzzy logic tries to 

generate mathematical approximations solving different types of problems. They claim to produce 

exact results from imprecise data, which is why it is particularly useful in electronic or 

computational applications. The fuzzy adjective applied to this logic is because the "non-

deterministic" truth values used in it generally have a connotation of uncertainty [19]. 
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2.1.3 Type-2 Fuzzy Logic 

 

Type-2 fuzzy logic is described as an extension of Type-1 fuzzy systems which was proposed 

in 1975 by Zadeh. These were designed in mathematical form to represent the uncertainty and 

vagueness that the linguistic problems bring and are characterized by the membership functions, 

this means, the degree of membership for each part of this is a fuzzy set between [0,1], contrasting 

a Type-1 where it established a membership grade is a crisp number between [0,1] [22]–[25]. 

 

Interval Type-2 fuzzy systems have two membership functions, a primary one which 

represents the degree of membership X and the secondary membership function weights of each 

Type-1 fuzzy sets, which is represented in the equation 2.1. 

 

�̃� = {(𝑥, 𝜇�̃�(𝑥))| 𝑥 ∈ 𝑋} (2.1) 

 

Understanding the above, the footprint of uncertainty (FOU) can be defined as the union of 

all the primary memberships, which has two membership functions, an upper one (UMF) 𝜇(𝑥) and 

a lower membership function (LMF) 𝜇(𝑥). These represent Type-1 fuzzy sets and have n 

embedded sets; and in this case the degree of membership of each element of a Type-2 fuzzy 

system is an interval [26]. 

There are different membership functions to represent fuzzy sets, in equation 2.2 the 

Trapezoidal membership functions are represented and in equation 2.3 the Gaussian membership 

functions are represented. 

 

𝜇(𝑥) = [𝜇(𝑥), 𝜇(𝑥)] = itrapatype2(x, [𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑎2, 𝑏2, 𝑐2, 𝑑2, 𝛼]) 

where 𝑎1 < 𝑎2, 𝑏1 < 𝑏2, 𝑐1 < 𝑐2, 𝑑1 < 𝑑2 

𝜇1(𝑥) = max (min (
𝑥 − 𝑎1
𝑏1 − 𝑎1

, 1,
𝑑1 − 𝑥

𝑑1 − 𝑐1
) , 0) 

𝜇2(𝑥) = max (min (
𝑥 − 𝑎2
𝑏2 − 𝑎2

, 1,
𝑑2 − 𝑥

𝑑2 − 𝑐2
) , 0) 

𝜇(𝑥) = {
𝑚𝑎𝑥(𝜇1(𝑥), 𝜇2(𝑥)) ∀ 𝑥 ∉ (𝑏1, 𝑐2)

1 ∀ 𝑥 ∈ (𝑏1, 𝑐2)
 

𝜇(𝑥) = 𝑚𝑖𝑛 (𝛼,𝑚𝑖𝑛(𝜇1(𝑥), 𝜇2(𝑥))) 

(2.2) 
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𝜇(𝑥) = [𝜇(𝑥), 𝜇(𝑥)] = igaussatype2(x, [𝜎,𝑚, 𝛼]) 

𝜇(𝑥) = 𝛼 exp [−
1

2
(
𝑥−𝑚

𝜎
)
2

]  Where  0 < 𝛼 < 1 

𝜇(𝑥) = exp [−
1

2
(
𝑥 − 𝑚

𝜎
)
2

] 

 

 

(2.3) 

 

 

2.1.4 Optimization  

 

Optimization is an important concept since this a significant improvement can be made to 

various applications and is describes as a mathematical process that seeks the best solution to a 

particular problematic [27]. Optimization has been widely used to improve results in different 

areas such as: control [28], underwater image processing [29], heat production [30], 

pharmaceutical tableting processes [31], time series prediction [32], among others. 

In the case of soft computing techniques, it is common to use bio-inspired algorithms to carry 

out this process. Furthermore, in recent years, new metaheuristics have been proposed as Emperor 

penguin optimizer [33], Barnacles Mating Optimizer [34], Sooty Tern Optimization Algorithm 

[35], Squirrel search algorithm [36], Tunicate Swarm Algorithm [37], to mention a few. The bio-

inspired algorithms used in this work are presented in the following sections. 

 

 

2.1.4.1 CSO 

 

The Chicken Swarm Optimization (CSO) algorithm was proposed in 2014 by Meng [38], 

which is inspired trying to imitate the order and behavior in the swarm of chickens and where there 

will be a division of groups where each one will have a rooster, and some hens and chickens. 

According to the chicken, it follows different laws of motion, where they will compete with each 

other according to a specific hierarchical order. 

 

To simplify the actual behavior of chickens, the following rules are proposed: 
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1. As mentioned, the swarm has different groups, which are made up of a leading rooster, a 

couple of hens, and chickens. 

2. The division of the swarm of chickens will depend on their fitness value, where the chicken 

with the best fitness will act as the rooster, which will be the head of the group, and the 

chickens with the worst fitness value will be the chickens. The rest will be hens, which 

randomly choose which group they correspond to. In addition to the fact that the mother-

child relationship is also established in random form. 

3. The hierarchy, dominance, and mother-child relationship will not change, they will only 

be updated every few steps of time (G). 

4. Chickens follow their group-mate rooster in search of food while preventing them from 

eating their food. Chickens are supposed to randomly steal good food found by others, 

whereby the chicks will search for food around their mother. Dominant chickens have the 

upper hand in the competition for food [38]. 

Chicken movements can be defined mathematically as follows: 

 

Chickens with the best fitness value will have priority in access to food than those with the 

worst fitness value, that is, the roosters with the best fitness value can perform the search in an 

ampler space than the roosters with the worst fitness value, which is mathematically translated as 

follows: 

 

 

𝜎2 = {

1, 𝑖𝑓 𝑓𝑖 ≤ 𝑓𝑘,

exp(
𝑓𝑘 − 𝑓𝑖
|𝑓𝑖| + 𝜀

), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
    𝑘 ∈ [1, 𝑁], 𝑘 ≠ 𝑖 (2.5) 

 

Where: 

 

𝑅𝑎𝑛𝑑(0, 𝜎2): It is a Gaussian distribution that has a mean of 0 and a standard deviation of 𝜎2. 

 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 ∗ (1 + 𝑅𝑎𝑛𝑑(0, 𝜎2)) (2.4) 
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𝜀: It is used to avoid the error in zero division, which corresponds to a small constant in the 

computer. 

k: Is an index of roosters, which is chosen randomly by the group of roosters 

f: Is the fitness value of the corresponding x. 

 

Chickens can follow companion roosters for food. In the same way, they can randomly steal 

the good food found by other chickens, but they can also be suppressed by the other chickens. 

Dominant hens have the advantage over submissive hens in competing for food. This behavior can 

be viewed as mathematically as follows: 

 

 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑆1 ∗ 𝑅𝑎𝑛𝑑 ∗ (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝑆2 ∗ 𝑅𝑎𝑛𝑑 ∗ (𝑥𝑟2,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) (2.6) 

 

𝑆1 = exp (
𝑓𝑖 − 𝑓𝑟1

𝑎𝑏𝑠(𝑓𝑖) + 𝜀
) (2.7) 

 

 

Where:  

 

Rand: are random numbers between [0,1] 

𝑟1 ∈ [1,…𝑁]: is an index of the roosters, which is the group mate of the i-th hen. 

𝑟2 ∈ [1,…𝑁]: is an index of chickens (roosters or hens) which are randomly chosen by the 

swarm and where 𝑟1 ≠ 𝑟2. 

Obviously, 𝑓𝑖 > 𝑓𝑟1, 𝑓𝑖 > 𝑓𝑟2, thus S2 < 1 < S1. Be assume S1=0 then the i-th hen would 

search for food followed by other chickens. As the difference in the fitness values of the chickens 

is greater, S2 will be smaller, also the distance between the position of two chickens will be greater. 

That is, chickens will not easily steal food that has been found by other chickens. 

For simplicity, the fitness values of the chickens in relation to the fitness value of the rooster 

are simulated as the competitions between chickens in a group. Suppose S2 = 0, then the i-th hen 

searches for food in its own search space. For the specific group, the fitness value of the rooster is 

unique. That is, the smaller the fitness value of the i-th hen, the S1 approaches 1, and the smaller 

𝑆2 = exp((𝑓𝑟2 − 𝑓𝑖)) 

 

(2.8) 
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the distance between the positions of the i-th hen and her group companion rooster. In such a way 

that the most dominant hens would have a greater probability of eating the food than the most 

submissive. 

The chicks move around their mother in search of food, this movement is translated as follows: 

 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝐹𝐿 ∗ (𝑥𝑚,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) (2.9) 

 

Where: 

 

𝑥𝑚,𝑗
𝑡 : Is the position of the i-th mother hen 𝑚 ∈ [1,𝑁]. 

𝐹𝐿(𝐹𝐿 ∈ (0,2)): Determines that the chicken will follow its mother in search of food. 

Individual differences must be considered, where the FL of each chick is chosen randomly between 

0 and 2. 

 

The CSO pseudocode is presented in Fig. 2.1. 

 

 
Fig.  2.1 Chicken Swarm Optimization Pseudocode 
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2.1.4.2 CSA 

 

Crow Search Algorithm (CSA) was proposed by Askarazadeh in 2016 [39], which mimics the 

behavior of crows. These animals are considered the most intelligent birds since they contain the 

largest brain about the size of their body. If the brain-body comparison is made, it is slightly lower 

than that of a human. Crows have been shown to have mirror self-awareness and tool-making skills 

and can remember faces and warn each other if another unfriendly animal approaches. They can 

also use tools, communicate in a sophisticated way, and remember where to hide their food for 

several months. It is well known that crows observe other birds learn the hiding places of their 

food and then steal it. 

If a crow has stolen, it will take extra precautions like moving its food to different hiding 

places to avoid being a victim. They use their own thief experience to predict a thief's behavior 

and thereby determine the safest way to protect their hiding places. The pseudocode of the 

algorithm is presented in Fig. 2.2. 

 

The principles of the CSA are:  

• Crows live in flocks 

• Crows memorize the position of their hiding places 

• Crows follow each other to steal 

• Crows protect their hiding places from being robbed by a probability 

 

Assume that there is a d-dimensional space where several crows are included. The number of 

crows (flock size) is N and the position of the crow i in time (iteration) iter in the search space is 

defined by a vector 𝑥𝑖,𝑖𝑡𝑒𝑟 (𝑖 = 1,2, …𝑁; 𝑖𝑡𝑒𝑟 = 1,2, … , 𝑖𝑡𝑒𝑟) where 𝑥1
𝑖,𝑖𝑡𝑒𝑟 =

[𝑥1
𝑖,𝑖𝑡𝑒𝑟, 𝑥2

𝑖,𝑖𝑡𝑒𝑟, … , 𝑥𝑑
𝑖,𝑖𝑡𝑒𝑟] and  𝑥𝑚𝑎𝑥 is the maximum number of iterations. Each crow memorizes 

the position of its hiding place. In the iteration, the position of the hiding place of the crow i is 

obtained at the moment. The crows move within the search space to search for the best food source. 

It is assumed that in the iteration iter, the crow j wants to visit its hiding place 𝑚𝑗,𝑖𝑡𝑒𝑟, in this 

iteration, crow i decides whether to follow crow j to crow j hiding place. This behavior can take 

two states: 
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State 1: Crow j does not know which crow is following him, as a result, crow i approaches 

hiding place j. The new position of the crow i is obtained by: 

 

𝑥𝑖,𝑖𝑡𝑒𝑟+1 = 𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑟𝑖 × 𝑓𝑙
𝑖,𝑖𝑡𝑒𝑟 × (𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟) 

 
(2.10) 

Where: 

 

𝑟1: is a random number with a uniform distribution between 0 y 1. 

𝑓𝑙𝑖,𝑖𝑡𝑒𝑟: is the length of crow i in iteration iter. 

The values of fl mean the local search (in the neighborhood 𝑥𝑖,𝑖𝑡𝑒𝑟) and large values are global 

searches (far from 𝑥𝑖,𝑖𝑡𝑒𝑟). 

 

 
Fig.  2.2 Crow Search Algorithm Pseudocode 

 

State 2: Crow j knows that crow i is following him, resulting in behavior to protect his hiding 

place from being robbed. Crow j will trick crow i by changing its position in the search space, both 

states can be expressed as follows: 

 

𝑥𝑖,𝑖𝑡𝑒𝑟+1 = {
𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑟𝑖 × 𝑓𝑙

𝑖,𝑖𝑡𝑒𝑟 × (𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟)        𝑟𝑗 ≥ 𝐴𝑃𝑗,𝑖𝑡𝑒𝑟

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2.11) 
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Where: 

𝑟𝑗: is a random number with a uniform distribution between 0 a 1 and 

𝐴𝑃𝑗,𝑖𝑡𝑒𝑟: is the probability of consciousness of crow j in the iteration iter. 

In this algorithm, intensification and diversification are mainly controlled by the probability 

of consciousness (AP) parameter. By decreasing the knowledge probability value, the algorithm 

searches locally where a current good solution is found in this region. This means that the use of 

small AP values increases the escalation. Otherwise, as the awareness probability value increases, 

the probability of searching in the vicinity of good current solutions decreases and the algorithm 

tends to explore the search space on a global scale. This means that using large AP securities 

increases diversification 

 

2.1.4.3 FPA 

 

The Flower Pollination Algorithm (FPA) [40] is inspired by the plant pollination process. The 

objective of this process in biological evolution is the survival of the fittest and the optimal 

reproduction of the plants, which can be viewed as an optimization process of the plants. 

Pollination can be done in two ways: 

• Biotic: This is when the pollen is transferred by pollinators, such as insects and animals, 

and this is carried out in about 90% of the plants. 

• Abiotic: This process does not require any pollinator, the wind, and water diffusion help to 

pollinate, and this is done in about 10% of the plants. 

In the same way, pollination can be achieved in the following ways: 

• Auto pollination: this refers to the fertilization of a flower, using the pollen of the same 

flower or different flowers of the same plant, and this occurs when there is no reliable 

pollinator available, an example of this is the blossoming peach. 

• Cross-pollination: This can occur from the pollen of a flower of a different plant. 

Other adjustments that the algorithm can have: to simplify the pollination process, the author 

assumes that each plant only has one flower, and each flower only produces one pollen gamete, 



Chapter 2. State of the art 

- 17 - 

 

which is why it is not necessary to distinguish it from a gamete, a plant, a flower or the solution of 

a problem [40] 

1. Once knowing the characteristics of this process, the following rules are created to be 

expressed in the algorithm: Biotic and cross-pollination are considered as the global 

process of pollination, with pollinators that transport pollen through Lévy flights. 

2. Abiotic pollination and self-pollination are considered local pollination. 

3. The constancy of the flowers can be considered as the probability of reproduction, which 

is proportional to the similarity of two flowers being involved. 

4.  Local and global pollination are controlled by a probability of change p ∈ [0, 1]. Due to 

physical proximity and other factors, such as wind, local pollination can have a significant 

fraction in p in all pollination activities. In Fig. 2.3, the pseudocode of the FPA is presented. 

 
Fig.  2.3 Flower Pollination Algorithm Pseudocode 

 

As mentioned above, global pollination is the one that occurs through pollinators, such as 

insects, and where pollen can travel long distances, because insects can travel in this way. This 
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ensures that the pollination and reproduction of the fittest, and is represented by 𝑔
∗
. The 

mathematical representation of the described rules is presented below. 

The first rule, plus the constancy of the flower is represented as: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝐿(𝑥𝑖
𝑡) − 𝑔∗, (2.12) 

 

where 𝑥𝑖
𝑡
 is the pollen i or the solution of the vector xi in the iteration t, and 𝑔

∗
 is the best 

current solution found among all the solutions in the current iteration. The parameter L is the force 

of pollination; this means that it is the strength of the steps for random flight purposes. Because 

insects can move over long distances, Lévy's flight can be used to efficiently mimic that 

characteristic, that is, L > 0 is drawn for a Lévy distribution. 

 

L~ 
λΓ(λ) sin (πλ 2⁄ )

π

1

s1 + λ
, (s ≫  s0  > 0). (2.13) 

In Equation 2, Γ(𝜆)  is the standard gamma function, and this distribution is valid for long steps s 

> 0. 

Local pollination and constancy of flowers (Rule 2) are represented as: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 +  𝜖(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡), (2.14) 

 

where 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are pollen from different flowers of the same plant. This essentially mimics 

the constancy of the flower in a limited neighborhood. Mathematically, if 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  come from 

the same species or is selected by the same population, this becomes a random local step if 𝜖 is 

drawn for a random distribution [0, 1]. 

Most flower pollination activities can be done both locally and globally. In practice, patches 

of adjacent flowers or flowers in the not-so-far neighborhood are more likely to be pollinated by 

pollen from local flowers than by pollen that is farther away. To do this, we use a probability of 

change (Rule 4) or a proximity p to change between local and global pollination, in other words, 

p controls the exploration and the exploitation of the algorithm. 
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2.1.4.4 BSA 

 

The Bird Swarm Algorithm (BSA) was proposed in 2015 by Meng [41] and it is based on the 

behavior of birds in the swarm. These behaviors are social behavior and social interaction and 

mimic feeding, flying, and vigilance to resolve problems through optimization. 

In this algorithm, the social behaviors of birds are summarized in the rules explained as 

follows: 

1- The behaviors of vigilance and foraging can switch in each bird. These behaviors are 

modeled as a stochastic decision. 

2- While foraging, birds can remember and update their and the swarms' best previous 

experience regarding a patch of food. Remembered experience can be utilized to search for food 

sources.  Regarding social information, this is instantly shared with the entire swarm 

3- While the birds keep vigilance, each one intends to go to the center of the swarm, this 

behavior can be affected by the interference induced by the competition in all the swarm. When 

the birds have the higher provisions would be more possible to be closer to the center of the swarm 

than birds with lower reserves of food. 

 4- Birds can usually fly to other sites when this is done, birds may change between producing 

and scrounging, where those birds with the highest reserve of food are taken as a producer, and 

the one that has the lowest provisions are taken as a scrounger. Birds that take a middle provision 

are select in the random form to be a producer and scrounger. 

5- Producers actively search for food. Scroungers would randomly follow a producer to search 

for food. 

 

The rules may be demonstrated in mathematical form as: 

a) Foraging behavior 

Each bird searches for food remembering its experience and the experience of swarms, this part is 

representing as: 

 

where  

𝑗 ∈ [1, … , 𝐷], 𝑟𝑎𝑛𝑑(0,1) is independent number distributed in (0,1) uniformly. 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + (𝑝𝑖,𝑗 − 𝑥𝑖,𝑗
𝑡 ) ×  𝐶 𝑋 ×  𝑟𝑎𝑛𝑑 (0,1) + (𝑔𝑗 − 𝑥𝑖,𝑗

𝑡 )  × 𝑆 × 𝑟𝑎𝑛𝑑 (0,1), (2.15) 
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C and S are known as cognitive and social acceleration coefficients respectively and represents 

two positive numbers.  

Pi,j is the best previous position in the ith bird and gj is the best previous position shared in the 

swarm. 

 

b) Vigilance behavior 

Each bird would try to change to the center of the swarm and compete with others, for this, 

each bird would not change in a direct way to the center of the swarm, this behavior is represented 

mathematically as: 

 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝐴1(𝑚𝑒𝑎𝑛𝑗 − 𝑥𝑖,𝑗
𝑡 ) × 𝑟𝑎𝑛𝑑(0,1) + 𝐴2(𝑝𝑘,𝑗 − 𝑥𝑖,𝑗

𝑡 ) × 𝑟𝑎𝑛𝑑(−1,1) (2.16) 

 

𝐴1 = 𝑎1 × exp (−
𝑝𝐹𝑖𝑡𝑖

𝑠𝑢𝑚𝐹𝑖𝑡 + 𝜀
× 𝑁) (2.17) 

 

𝐴2 = 𝑎2 × 𝑒𝑥𝑝((
𝑝𝐹𝑖𝑡𝑖 − 𝑝𝐹𝑖𝑡𝑘

|𝑝𝐹𝑖𝑡𝑘 − 𝑝𝐹𝑖𝑡𝑖| + 𝜀
)
𝑁 × 𝑝𝐹𝑖𝑡𝑘
𝑠𝑢𝑚𝐹𝑖𝑡 + 𝜀

) (2.18) 

 

 

Where k is a positive integer, selected in random form between 1 and N. pFiti denotes the best 

fitness value in the ith position and sumFit is the sum of the best fitness value of the swarms. 𝜀 is 

a small number used to evade the zero-division error. meanj is the jth element of the average place 

of the whole swarm. a1 and a2 are positive constants in [0,2].  

 

a) Flight Behavior 

Birds may move to other sites in response to foraging, predation threats, or another reason. 

Once are placed in the new place; the birds search for food again. The producers observe for 

patches of food, while the scroungers try to feed on the food patch found by the producers. These 

behaviors are illustrating as follow: 
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𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + rand𝑛(0,1) × 𝑥𝑖,𝑗
𝑡 ,  (2.19) 

 

𝑥𝑖,𝑗
𝑡+1 =  𝑥𝑖,𝑗

𝑡 + (𝑥𝑘,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) × 𝐹𝐿 × rand(0,1), (2.20) 

 

Where randn (0, 1) signify a Gaussian distributed random numbers with mean 0 and standard 

deviation 1, k ∈ [1,2,3… N], k ≠ i. FL (FL∈ [0, 2]) represents that the scrounger will follow the 

producer to search for food. 

For simplicity, the author assumes that each bird may fly to another place every FQ unit 

interval, where FQ is a positive integer.  

The pseudocode of BSA is presented in Fig. 2.4. 

 
Fig.  2.4 Bird Swarm Algorithm Pseudocode 
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2.2 Blood Pressure 

 

Blood pressure (BP) is defined as the force exerted against the walls of the arteries as the heart 

pumps blood, this process is necessary and important since it is responsible for the blood to 

circulate through the blood vessels and supply oxygen and nutrients necessary to all organs so that 

the body can function [42], [43]. In clinical form, blood pressure levels are expressed in millimeters 

of mercury (mmHg), additionally are divided into two components: 

Systolic Pressure: is the maximum value, it measures the force of the blood in the arteries 

when the heart contracts (beats). 

Diastolic Pressure: corresponds to the minimum value, measures the force of the blood in the 

arteries while the heart is relaxed (filling with blood in between beats) [44], [45].  

The arterial system is made up of the large arteries or arteries of capacity, which, in tune with 

the heart rate, distend with each surge of blood, cushioning its pressure; then it contracts in each 

cycle, propelling the blood towards more peripheral territories, such as the small resistance arteries 

or arterioles, tiny microscopic vessels that do offer great resistance to the passage of blood. The 

blood reaches them with the pressure already very cushioned and from there the passage of oxygen 

and nutrients to the tissues is verified [46] . 

Based on the European guideline for the management of hypertension [4] in adults, normal 

blood pressure is defined by the following values: a systolic pressure below 139 mmHg and a 

diastolic pressure below 89 mmHg. The different values of blood pressure are presented in Table 

2.1 [4]. It is normal for blood pressure to change, being lower at night with sleep and higher in the 

early hours of the morning. In activity, the blood pressure usually goes up. However, once stop the 

activity, the blood pressure goes back to the normal range. Generally, the blood pressure increases 

based on the age and body size. Newborn babies often have very low blood pressure values that 

are considered normal for them. And the Older adolescents have values similar to that of 

adults[47]. 
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Table  2.1 Blood pressure classification 

Category Systolic  Diastolic 

Optimal <120 and <80 

Normal 120-129 and/or 80-84 

Normal High 130-139 and/or 85-89 

Hypertension grade 1 140-159 and/or 90-99 

Hypertension grade 2 160-179 and/or 100-109 

Hypertension grade 3 ≥180 and/or ≥110 

Isolated systolic hypertension ≥140 and <90 

 

 

2.2.1 Hypertension 

 

Hypertension is defined as the maintained elevation of blood pressure above the limits 

considered normal [48], [49], [50]. The disease becomes fatal due to the damage it produces in the 

impact organs, which are: 

•  Blood vessels: arteriosclerosis and atherosclerosis. 

• Heart: heart failure. 

• Kidney: kidney failure. 

• Eyes: blindness. 

Hypertension is classified as: 

Essential hypertension: develops without a specific cause, but with a hereditary history, 

appears in isolation, or is part of a complex of alterations found around insulin resistance [51]. 

Secondary hypertension: In this type of hypertension, there are demonstrable causes, where 

the most frequent are vascular and endocrine diseases, pregnancy, acute stress, and aortic 

coarctation. It should be suspected in two situations: 

• Hypertension in people with 35 years or less 
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• Absence of a family history of high blood pressure [52], [53]. 

In some cases, the elevation of blood pressure is reversible when the disease is successfully 

treated. 

The risk factors related to the development of hypertension are: 

1. Excessive alcohol consumption or tobacco use. 

2. Overweight and physical inactivity. 

3. Age and gender, 35-year-old men are more likely to develop hypertension than 

women, but when women enter menopause, this probability is similar. 

4. High salt intake. 

5. Sleep apnea. 

6. Family history, if your parents or other close relatives have this disease, it is likely 

that you will develop hypertension. 

7. Race, African Americans have more probability to develop hypertension [47]. 

 

2.2.2 Heart Rate 

 

Heart Rate is understood as the number of the heart contracts in a time, which corresponds to 

beats in one minute. Age can produce changes in the regularity and the velocity of the heart rate, 

this can be translated into a heart or other condition which should be treated by a specialist [54]. 

When people are at rest, the heart pumps the least amount of blood necessary, this being 

between 60 and 100 beats per minute (BPM) in a healthy person, but it should be mentioned that 

a heart rate less than 60 BPM does not mean that the patient has some medical problem as it can 

be due to some medication or a well-trained athlete, since, in them, the heartbeat is usually up to 

40 beats per minute. Heart rate values according to age and gender are presented in Table 2.2 [55], 

[56]. 
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Table  2.2 Values of heart rate according to age and gender 

 Men Women 

Age Ill Normal Good Excellent Ill Normal Good Excellent 

20-29 86 or more 70-84 62-68 60 or less 96 or more 78-94 72-76 70 or less 

30-39 86 or more 72-84 64-70 62 or less 98 or more 80-96 72-78 70 or less 

40-49 90 or more 74-88 66-72 64 or less 100 or more 80-98 74-78 72 or less 

50 or more 90 or more 76-88 68-74 66 o or less 104 or more 84-102 76-86 74 or less 

 

Two conditions depend on the heart rate: 

 

Bradycardia: When the heart rate is less than 60 beats per minute, this is when the heart rate is 

slow or irregular, which may cause dizziness or difficulty breathing in activities in normal form or 

light exercises [57].  

Tachycardia: When the heart rate is greater than 100 beats per minute, that is the heart rate is fast 

or irregular. When this condition happens, the heart cannot effectively pump blood with high levels 

of oxygen to the body. [58]. 

 

2.2.3 Nocturnal Blood Pressure Profile 

 

With the study carried out with the Ambulatory Blood Pressure Monitoring, the variability 

of blood pressure over 24 hours is observed, obviously including the behavior of blood pressure 

during the rest period and thus obtain a more precise diagnosis [59]. 

The normal circadian profile is characterized by a 10-20% decrease in nocturnal BP figures 

versus daytime or activity BP figures. The absence of a decrease in nighttime BP figures <10% is 

considered a non-dipper pattern. Another way to define the dipper / no dipper pattern is through 

the night/day ratio so that the dipper patients would present a ratio between 0.90 and 0.80, the non-

dippers between 0.91-1.00, the dipper extreme (nocturnal BP decrease> 20% of the daytime BP 

figures) is <0.80 and the riser (mean of the nocturnal BP values higher than the daytime BP) has 

a ratio> 1.00 [60]. 

The absence of a nocturnal decrease in BP, the non-dipper pattern, has classically been 

associated with a higher risk and worse cardiovascular prognosis than the dipper pattern. Recent 
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studies reaffirm the low reproducibility of the dipper / non-dipper pattern. A review by Mc Gowan 

et al concluded that, in the long term, the nocturnal decrease in BP expressed as a continuous 

variable was a much more stable parameter and a better predictor of cardiovascular risk than the 

dipper / no dipper pattern [61], [62]. 

2.2.4 Ambulatory Blood Pressure Monitoring 

 

Ambulatory Blood Pressure Monitoring (ABPM) is a non-invasive study to obtain blood 

pressure measurements during 24 hours, which is described as a device connected to a blood 

pressure cuff that keeps records of arterial pressure and pulse of patients in a defined time interval, 

which ranges from 15 to 20 minutes in the day and 30 minutes at night, to be later transferred to a 

computer. Hypertension is determined when more than 40% of the records are greater than 135/85 

mmHg during the day and greater than 120/70 mmHg at night [59], [63]. 

Medical cardiologists recommend using ABPM in the following cases: 

• Suspicion of white coat hypertension: This is when the blood pressure is high in the 

office, but at home these figures are normal, this is because many patients tend to 

get nervous thinking that the doctor will give them the diagnosis of some serious 

illness [64]. 

• Normal blood pressure figures during the medical visit, but with signs of impact 

organ damage. 

• Sporadic or crisis hypertension. 

• • Evaluation of the blood pressure profile (dipper or non-dipper). 

• Hidden or masked hypertension, patients with normal blood pressure figures in the 

office while the mean home ABPM values are in the hypertensive range [41]. 

2.2.5 Framingham Heart Study 

 

The Framingham Heart Study started in 1948 [65], directed by the National Cardiac Institute, 

which is carried out to identify risk factors that have been the cause for the development of 

cardiovascular diseases. 
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This study commences by enlisting a group of 5,209 men and women from Framingham, aged 

between 30 and 62 years old, who did not have any symptoms of cardiovascular disease or suffered 

a heart attack or stroke. During the study, different groups of people have been added, such as the 

offspring of the first group in 1971, the multicultural group Omni in 1994, the third generation of 

the offspring’s in 2002, and the second group of Omni in 2003 [65]. 

Different risk functions have been developed to identify other diseases, as arterial fibrillation, 

coronary disease, diabetes, among others. 

One of the diseases that is included in these risk functions is hypertension, with this, which is 

a Weibull regression model [66], [67], it can find the percentage of risk that a patient has in 

developing this condition in 4 years. To obtain the diagnosis, patient information is used, such as 

Age, Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Body Mass Index (BMI), 

Sex, Smoking, Parental Hypertension. 

The mathematical expression for the risk of developing hypertension is the following: 

 

𝐹𝐻𝑆 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑟𝑖𝑠𝑘 = 1 − 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (
ln(4) − 22.94954 + ∑ 𝑥𝑖

8
𝑖=1

0.8769
)]  

(2.21) 

 

 

It can be observed that different parameters are used: 

ln (4) determines the risk time, in this case 4 years. 

22.94954 is a constant that corresponds to the intercept. 

0.8769 is a constant that corresponds to the scale. 

In addition, each risk variable is assigned a ꞵ regression coefficient and x is the level of each 

variable and is assigned as follows: 

x1 = -0.15641*Age, x2 = -0.20293*Sex, x3 = -0.05933*SBP x4 = -0.12847*DBP, x5 = -

0.19073*Smoking, x6 = -0.16612*Parental Hypertension, x7 = -0.03388*BMI, x8 = 

0.00162*DBP*Age 

If the patient smokes then the variable Smoking is assigned to one, otherwise it is assigned to 0. 

If none of the parents are hypertensive the variable Parental Hypertension is assigned to 0, 

otherwise if one of the parents is hypertensive it is assigned to 1 and finally, if both of the parents 

are hypertensive it is assigned to 2 [65], [68]. 
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2.2.6 Cardiovascular Risk 

 

Cardiovascular risk is the probability that people appear to be a cardiovascular event in a time, 

which can be between 5 and 10 years [48].  The main risk factors can be: 

Non-modifiable: age, sex, genetic factors, family history. 

Modifiable: high blood pressure, smoking, hypercholesterolemia, diabetes mellitus, obesity, 

physical inactivity. 

The lasts are those of greatest interest to medical cardiologists since by acting preventively 

they can be reduced [69].
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Chapter 3. Proposed method 
 

 

In this chapter, it is explained how the neuro-fuzzy hybrid model was created to obtain the 

risk diagnosis of developing hypertension, which describes in detail how each of the soft 

computing techniques was used, and also how the database used was generated.  A description of 

the Interval Type-2 fuzzy systems (IT2FS) created is realized to compare the results with the Type-

1 fuzzy systems and observe their performance. 

 

3.1 Neuro-fuzzy hybrid model 

A neuro-fuzzy hybrid model is proposed to provide a medical diagnosis based on the blood 

pressure of patients, the scheme of which is presented in Fig. 3.1, and each of its parts is described. 

 

Fig.  3.1 Hybrid neuro-fuzzy model 

 

 First, a database is created with the blood pressure records of a group of 300 people, of which 

24 belong to teachers and graduate students in computer science at the Tijuana Institute of 

Technology and 276 are patients of the Cardio Diagnostic Center, both located in the city of 
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Tijuana. Ambulatory blood pressure monitoring is used to obtain the record of blood pressure 

readings, operating two models: Microlife Watch BP03 ABPM monitor and the Spacelab 90217A 

ABPM monitor. The records are organized into systolic pressure, diastolic pressure, and heart rate. 

They are the inputs to each of the modules of the modular neural network respectively, where 47 

readings are taken from each patient for each module to train the information, learn the behavior, 

the variation from person to person, and thereby obtain the trend of the behavior of blood pressure 

in 24 hours.  

Different fuzzy systems have the function of classifying the information, which is described 

below: 

The first fuzzy classifier provides the blood pressure level of the patients, for this, the result 

of the blood pressure trend obtained by the first and second modules of the modular neural network 

is given as input. For the second fuzzy classifier, the output of the third module of the modular 

neural network is used, which corresponds to the heart rate, and together with the age, it gives us 

the level of the heart rate that the patient has. To obtain the classification of the nocturnal blood 

pressure profile, the day and night readings are divided, the quotient of systolic and diastolic 

pressure is obtained so that they are the input to the fuzzy classifier and thus obtain said result. For 

the last fuzzy classifier, the percentages of the daytime and nighttime pressure load will be used to 

obtain the level of the patient's pressure load and with this to be able to determine if is prone to 

developing damage in any of the organs. 

The next part in the diagram corresponds to a monolithic neural network, which is given as 

input 7 risk factors for a group of people which are: age, sex, body mass index, systolic and 

diastolic pressure, if the patient smokes, and if either of your parents is hypertensive. With this 

information, the artificial neural network trains, learn the different risk factors to provide a risk 

diagnosis that a patient has in developing hypertension in 4 years. 

Next, it has another modular neural network, where each module is given risk factors as input, 

which are: age, sex, body mass index, systolic pressure, if the patient is undergoing hypertension 

treatment, if he smokes and if you are a diabetic patient. The first module provides the risk that the 

patient has in developing a cardiovascular event in 10 years, while modules 2 and 3 provide us 

with the age of the patient's heart that is with and without treatment, respectively. 

Taking the results of each of the intelligent computing techniques used, a final medical 

diagnosis is made. It is worth mentioning that each of the elements of the proposed model was 
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optimized with bio-inspired algorithms to provide an accurate diagnosis, which will be described 

in the next chapter. 

 

3.2 IT2FS for classification of Heart Rate Level 

 

An Interval Type-2 fuzzy system is designed for the heart rate classification, to observe which 

one provides better results. Once the Type-1 fuzzy system has been optimized, the parameters of 

the best fuzzy obtained are taken and set to IT2FS to start from there and add the footprint of 

uncertainty. The general scheme is presented in Fig.3.2. 

 

 

 
Fig.  3.2 IT2FS for heart rate classification 

 

3.3 IT2FS for classification of Nocturnal Bloor Pressure Profile 

 

In the same way as the fuzzy system for heart rate classification, an Interval Type 2 fuzzy 

system is designed for the classification of the nocturnal blood pressure profile, also taking the 

best parameters obtained from its optimization. The general scheme is illustrated in Fig. 3.3. 
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Fig.  3.3 IT2FS for nocturnal blood pressure profile classification 

 

To be able to provide the patient's nocturnal blood pressure profile classification, the Interval 

Type 2 fuzzy system requires as input the quotient of systolic and diastolic pressure, which are 

obtained by separating the daytime and nighttime blood pressure readings. 
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Chapter 4. Study cases 
 

 

In this chapter, each of the optimizations made to the proposed model is described and 

comparisons of the different algorithms used for said optimizations are made to analyze the 

performance of each one and determine with which a better result is obtained, these experiments 

are organized as study cases. 

 

4.1 Optimization of fuzzy system to provide the correct classification of the nocturnal 

blood pressure profile 

 

For this first study case, the optimization of a fuzzy system is carried out for obtain the correct 

classification of the nocturnal blood pressure profile (NBBP), of which the methodology carried 

out is explained as follows: 

 

4.1.1 Design a fuzzy system for classification of nocturnal blood pressure profile  

 

A Mamdani fuzzy inference system (FIS) is created, taking into account the experience of the 

expert and [60]. This FIS uses two inputs which are the quotient of the systolic pressure and the 

quotient of the diastolic pressure, the range goes from 0.4 to 1.3 and is granulated in four 

membership functions using "GreaterFall ", " Fall ", " Increase " and " GreaterIncrease " as 

linguistic variables. The output represents the nocturnal blood pressure profile, which uses the 

range from 0 to 100% and is granulated in four using "Extreme Dipper", "Dipper", “Non-Dipper” 

and "Riser" as linguistic variables.  Fig 4.1 represents the proposed fuzzy system. 
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Fig. 4.1 Nocturnal Blood Pressure Profile Fuzzy System 

 

Two versions of this fuzzy system are design, the first using Trapezoidal membership 

functions and the second using Gaussian membership functions to make a comparison of the 

generated results. Fig. 4.2 presents the inputs and output of the second version of the fuzzy system 

designed. 

 

 

Fig. 4.2 (a) Systolic Input, (b) Diastolic Input (C) NBBP Output 

a) b) 

c) 
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The rules used for the fuzzy system are four and are presented in Table 4.1. 

 

Table  4.1 Rules used for the fuzzy system 

Systolic Diastolic Output 

Greater Fall Greater Fall Extreme Dipper 

Fall Fall Dipper 

Increase Increase Non-Dipper 

Greater Increase Greater Increase Riser 

 

 

To perform the optimization, the CSO and CSA algorithms are used with the objective of 

compared the performance of both algorithms as well as observing which generates better results. 

The algorithms are used to generate the necessary adjustments in each point to the membership 

functions to obtain the one that generates the least error. To identify this as an objective is used 

the Mean Square Error (MSE) function, which is presented in Equation 4.1. 

 

MSE =
1

2
∑(Yi − Ŷi)

2

n

i=1

 

 
 (4.1) 

 

 

Where:  

n: corresponds to the number of data points, 

Y: corresponds to the observed values, 

Ŷ: corresponds to the predicted values. 

 

4.1.2 Experimentation and Results  

 

With the CSA algorithm, the first 30 experiments are carried out, varying their parameters, 

which are presented in Table 4.2. Such optimization is done for both fuzzy system created with 

Trapezoidal and Gaussian membership functions. 
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The algorithm uses different parameters which are listed as follows: 

N is the number of individuals, AP is the awareness probability, which was varied between 0 to 1, 

Iter are the iterations, DT is the dimensions used for the fuzzy system with trapezoidal membership 

functions, DG is the dimensions used for the fuzzy system with Gaussian membership functions 

and Fl is the flight length random numbers between 0 and 2.  

 
Table  4.2 Parameters used by CSA in the experiments 

 Parameters of CSA 

No N AP Iter DT DG fl 

1 5 0.5 4000 48 24 2 

2 10 0.3 2000 48 24 0.5 

3 15 0.7 1333 48 24 0.8 

4 18 0.9 1111 48 24 1 

5 20 0.2 1000 48 24 1.5 

6 23 0.8 869 48 24 2 

7 26 0.1 769 48 24 0.4 

8 30 0.4 666 48 24 1.3 

9 33 0.6 606 48 24 1.8 

10 35 0.7 571 48 24 0.7 

11 38 0.8 526 48 24 0.3 

12 40 0.5 500 48 24 1 

13 43 0.3 465 48 24 1.2 

14 47 0.2 425 48 24 0.1 

15 50 0.4 400 48 24 0.9 

16 52 0.6 384 48 24 1.7 

17 55 0.2 363 48 24 2 

18 60 0.1 333 48 24 0.3 

19 64 0.9 312 48 24 0.6 

20 67 0.7 298 48 24 1.6 

21 70 0.4 285 48 24 1.4 

22 72 0.5 277 48 24 0.2 

23 75 0.3 266 48 24 0.7 

24 80 0.4 250 48 24 1.1 

25 85 0.2 235 48 24 2 

26 87 0.6 229 48 24 0.5 

27 90 0.1 222 48 24 0.8 

28 92 0.8 217 48 24 1 

29 96 0.9 208 48 24 0.4 

30 100 0.5 200 48 24 0.7 
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30 experiments are performed with the CSO algorithm to observe its performance. In each 

experiment, each of the parameters was varied, which are listed in Table 4.3, where: 

 

 
Table  4.3 Parameters used for CSO in the experiments 

Parameters of CSO 

No pop M DT DG G r% h% m% 

1 5 4000 48 24 14 0.15 0.6 0.3 

2 10 2000 48 24 9 0.15 0.8 0.5 

3 15 1333 48 24 3 0.15 0.7 0.3 

4 18 1111 48 24 15 0.15 0.6 0.4 

5 20 1000 48 24 16 0.15 0.5 0.2 

6 23 869 48 24 20 0.15 0.7 0.1 

7 26 769 48 24 15 0.15 0.8 0.5 

8 30 666 48 24 16 0.15 0.6 0.2 

9 33 606 48 24 4 0.15 0.5 0.5 

10 35 571 48 24 14 0.15 0.8 0.1 

11 38 526 48 24 9 0.15 0.6 0.4 

12 40 500 48 24 9 0.15 0.7 0.3 

13 43 465 48 24 16 0.15 0.8 0.2 

14 47 425 48 24 12 0.15 0.5 0.4 

15 50 400 48 24 9 0.15 0.6 0.4 

16 52 384 48 24 16 0.15 0.6 0.5 

17 55 363 48 24 3 0.15 0.7 0.2 

18 60 333 48 24 8 0.15 0.8 0.4 

19 64 312 48 24 11 0.15 0.5 0.1 

20 67 298 48 24 2 0.15 0.7 0.1 

21 70 285 48 24 5 0.15 0.6 0.4 

22 72 277 48 24 17 0.15 0.8 0.2 

23 75 266 48 24 7 0.15 0.7 0.1 

24 80 250 48 24 6 0.15 0.6 0.4 

25 85 235 48 24 19 0.15 0.8 0.3 

26 87 229 48 24 4 0.15 0.6 0.3 

27 90 222 48 24 9 0.15 0.7 0.1 

28 92 217 48 24 19 0.15 0.8 0.5 

29 96 208 48 24 13 0.15 0.6 0.1 

30 100 200 48 24 10 0.15 0.5 0.3 

 

Pop is the population, M is the iterations, DT is the dimension used for the fuzzy system with 

trapezoidal membership functions, DG is the dimension used for the fuzzy system with Gaussian 
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membership functions, G is how often the chicken swarm can be updated, r% is the population 

size of roosters, h% is the population size of hens and m% is the population size of mother hens. 

80 patients are used to test the fuzzy system generated by both algorithms, and with them to 

be able to compare the results obtained and determine which algorithm provides the best results. 

Table 4.4 listed the percentage of classification obtained in the experiments performed by the CSA 

and CSO algorithms respectively. 

Table  4.4 Comparison of percent of success obtained by the algorithms 

% success Trapezoidal 

MFs 

 % success Gaussian 

MFs 

CSO CSA  CSO CSA 

92.5 86.25  85 72.25 

90 81.25  83.75 72.5 

88.75 87.5  83.75 95 

91.25 87.5  85 78.75 

87.5 81.25  85 88.75 

90 88.75  90 86.25 

92.5 88.75  87.5 75 

91.25 86.25  90 83.75 

91.25 86.25  91.25 91.25 

91.25 86.25  86.25 76.25 

90 87.5  92.5 78.75 

90 88.75  87.5 90 

91.25 88.75  87.5 80 

87.5 87.5  88.75 80 

90 86.25  88.75 92.5 

93.75 88.75  81.25 76.25 

91.25 87.5  87.5 87.5 

93.75 87.5  87.5 88.75 

91.25 87.5  86.25 90 

95 87.5  86.25 83.75 

93.75 88.75  88.75 83.75 

93.75 88.75  88.75 78.75 

91.25 86.25  88.75 75 

93.75 87.5  90 88.75 

90 88.75  87.5 95 

92.5 88.75  90 91.25 

91.25 87.5  88.75 92.5 

92.5 86.25  87.5 90 

90 88.75  87.5 85 

95 88.75  86.25 93.75 
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Analyzing each of the experiments carried out by both algorithms, it can be observed that in 

the optimization with the CSO algorithm using Trapezoidal membership functions, the highest 

classification was 95% in experiment 21, while with the CSA good results were not obtained. For 

the case of the fuzzy system with Gaussian membership functions, with the CSO the highest 

classification was 92.5%, while with the CSA it was 95% in experiment 25 and in general the 

lowest classification obtained was with this same fuzzy and with only 72.25% in experiments 1 

and 2. 

The average obtained from the 30 experiments carried out by both algorithms is presented in 

Table 4.5. It is observed that in the two FIS designed the CSO algorithm provides a higher average 

classification. Analyzing the results of the fuzzy system using trapezoidal membership functions, 

it is observed that 91.46% of classification is obtained, whereas for the fuzzy system using 

Gaussian membership functions is obtained on average of 87.25% correct classification. 

 

 
Table  4.5 Summary of the average  

CSO CSA 

Trapezoidal Gaussian Trapezoidal Gaussian 

91.46% 87.59% 87.25% 84.7% 

 

 

4.1.3 Statistical test 

 

To determine which of the algorithms used provided the least error, a statistical test is carried 

out using the parametric Z test. The experimentation carried out is revealed in two cases, beginning 

to study the results obtained with the fuzzy systems designed with Trapezoidal membership 

functions. The results of the 30 experiments generated by the CSA and CSO algorithms are studied, 

from which the average of the classification provided is taken. 

The formula for the Z test is expressed mathematically as follows:  

 

 

𝑍 = 
(�̅�1 − �̅�2) − (𝜇1 − 𝜇2)

𝜎�̅�1−�̅�2
 

  

(4.2) 
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Where: 

 

�̅�1 − �̅�2: It is the observed difference 

 

𝜇1 − 𝜇2: It is the expected difference. 

 

𝜎�̅�1−�̅�2: Standard error of the differences. 

 

It is established as a null hypothesis that the average of the classification obtained by the CSO 

algorithm is less than or equal to the average of the classification obtained by the CSA algorithm. 

The alternative hypothesis establishes that the average obtained derived from the classification of 

the CSO algorithm is greater than the average obtained from the experiments carried out by the 

CSA algorithm. In Table 4.6 the parameters of the Z test are presented. 

 
Table  4.6 Hypothesis test parameters 

 

 

 

 

 

 

 

 

 

The descriptive statistics of the first case study are presented in Table 4.7. 

 
Table  4.7 Z-test descriptive statistics 

Variable Observations Mean Std. deviation 

CSO 30 91.458 1.944 

CSA 30 87.250 1.897 

 

The results obtained derived from the Z test are presented in Table 4.8. 

 
Table  4.8  Z-test results 

Difference 4.208 

z (Observed value) 8.485 

z (Critical value) 1.645 

p-value 0 

alpha 0.05 

 

Parameters 

Confidence interval  95% 

alpha 0.05 

Ho µ1 ≤ µ2 

Ha µ1 ˃ µ2 

Critical value Z= 1.645 
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From the results obtained, the following is concluded: Because the result of the p-value is less 

than the level of significance alpha = 0.05, the null hypothesis is rejected and the alternative 

hypothesis is accepted, with which it can be determined that there is sufficient evidence with a 5% 

significance level to support the claim that the ranking provided by the CSO algorithm is higher 

than the ranking generated by the CSA algorithm. 

For the second case, 30 experiments are performed using the CSO and CSA algorithms for 

optimization of the fuzzy system using Gaussian membership functions, from which the average 

of classification obtained by the aforementioned methods is used to enhance the statistical test. 

The null hypothesis is established that the average of the classification obtained by the CSO 

algorithm is less than or equal to the average of the classification obtained by the CSA algorithm. 

The alternative hypothesis establishes that the average obtained derived from the classification of 

the CSO algorithm is greater than the average obtained from the experiments carried out by the 

CSA algorithm. In Table 4.9 the Z-Test parameters are presented. 

 
Table  4.9 Hypothesis test parameters 

 

 

 

 

 

 

 

 

 

 

 

The descriptive statistics of the second case study are presented in Table 4.10. 

 

 
Table  4.10 Descriptive statistics of Z-test 

 

 

 

 

 

The results obtained derived from the Z test are presented in Table 4.11. 
 

 

 

Parameters 

Confidence interval  95% 

alpha 0.05 

Ho µ1 ≤ µ2 

Ha µ1 ˃ µ2 

Critical value Z= 1.645 

Variable Observations Mean Std. deviation 

CSO 30 87.500 2.390 

CSA 30 84.700 7.030 
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Table  4.11 Z-test results 

Difference 2.800 

z (Observed value) 2.065 

z (Critical value) 1.645 

p-value 0.0165 

alpha 0.05 

 

 

From the results obtained, the following is concluded: Because the result of the p-value is less 

than the level of significance alpha = 0.05, the null hypothesis is rejected and the alternative 

hypothesis is accepted, with which it can be determined that there is sufficient evidence with a 5% 

significance level to support the claim that the rating provided by the CSO algorithm is better than 

the rating generated by the CSA algorithm. 

 

4.2 Fuzzy system optimization to obtain the heart rate level 

 

For this second case study, the optimization of the Type-1 and Interval Type-2 fuzzy system 

is performed for obtaining the correct classification of the heart rate in different patients, of which 

the methodology performed is explained as follows: 

 

4.2.1 Proposed method for optimization of the Heart rate fuzzy classifier 

 

For this part of the proposed model, a Type-1 fuzzy system is created for obtaining the correct 

classification of the heart rate level. This is optimized by the Brid Swarm Algorithm to provide an 

accurate diagnosis. Once this is done, the parameters of the best fuzzy provided by the algorithm 

are taken to design the Interval Type-2 fuzzy system to also be optimized, to compare the results 

of each of them and determine which one is provided the best diagnosis. 

The methodology proposed for this optimization is presented in Fig. 4.3, and is carried out as 

follows: 

From the generated database, patient information is taken to give it as input to the fuzzy system 

in each iteration of the algorithm and to test the classification obtained. The first input that the 

fuzzy system uses is the patient's age and the second input is the heart rate trend. Besides, the 

classifier is tested with Gaussian and Trapezoidal membership functions. 
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The individuals of the algorithm, which are the birds, move the parameters of the membership 

functions (MF) in the given search space while they find a fuzzy system that provides the smallest 

error in the classification. To obtain this measurement, a set of 30 test patients is used, which enters 

the algorithm at each iteration, and to measure the error generated, is used the MSE as the objective 

function, this is presented in Equation 4.1. 

 

 

Fig. 4.3 Model used for the optimization of Heart Rate fuzzy classifier 

 

Since it has the Type-1 fuzzy system that has provided the best classification, the parameters 

of the membership functions are used as a base to construct the Interval Type-2 fuzzy system, of 

which is optimized the footprint of uncertainty. 

 

4.2.1.1 Design of Type-1 fuzzy system for obtaining the Heart Rate Level using 

Trapezoidal MF. 

 

The fuzzy system designed to solve this problem is of the Mamdani type, based on the expert's 

experience and [70], which has two inputs which corresponds to the age and the trend of the heart 

rate and the output  corresponds to the heart rate level, this  is presented in Fig. 4.4 and described 

as follows: 
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Fig. 4.4 Heart Rate Level Fuzzy System 

 

The first input, that is the age is presented in Fig 4.5 and is grainy with four MFs, which use 

"Child", "Young", "Adult", and "Elder" as linguistic variables, in addition to using a range from 0 

to 100. 

 

Fig. 4.5 Age input 

The second input, that corresponds to the trend of heart rate is presented in Fig 4.6 and is 

grainy with five membership functions, using "VeryLow", "Low", "Normal", "High" and 

"VeryHigh" as linguistic variables, in addition to using a range from 0 to 220, since it is the 

maximum heart rate that a person can have while doing physical activity. 
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Fig. 4.6 Heart Rate Input 

The heart rate level output is presented in Fig 4.7 which is grained with five membership 

functions, using  "Low", "BelowAV", "Excellent", "AboveAV" and "VeryHigh" as linguistic 

variable, in addition to going in a range from 0 to 100%, determining if the patient's heart rate level 

is high, low or at an optimal level. This fuzzy system uses the centroid as defuzzification. 

 

 

Fig. 4.7 Heart Rate Level Output 

 

4.2.1.2  Design of Type-1 fuzzy system for obtaining the Heart Rate Level using Gaussian 

MF. 

 

 

The input age is presented in Fig 4.8 and is grainy with four membership functions, which use 

the linguistic variables "Child", "Young", "Adult" and "Elder", additional using a range from 0 to 

100. 
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Fig. 4.8 Age Input 

The heart rate input is presented in Fig 4.9 and is grainy with five membership functions, using 

"VeryLow", "Low", "Normal", "High" and "VeryHigh" as linguistic variables, in addition to using 

a range from 0 to 220, since it is the maximum pulse that a person can have while doing physical 

activity. 

Fig. 4.9 Heart Rate Input 

The heart rate level output is presented in Fig 4.10 which is grained with five membership 

functions, which corresponds to "Low", "BelowAV", "Excellent", "AboveAV" and "VeryHigh" 

linguistic variables, in addition to that it goes in a range from 0 to 100%, determining if the patient's 

heart rate level is high, low or at an optimal level. This fuzzy system uses the centroid as 

defuzzification. 
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Fig. 4.10 Heart Rate Level Output 

Table 4.12 presents the fuzzy rules, this are based on the age and tendency of the heart rate to 

determine the classification of the heart rate level. 

 

Table  4.12 Rules of the Heart Rate Level FIS 

 

 

 

 

 

 

 

 
 

4.2.2 Type-1 fuzzy system optimization using the BSA 

 

For this optimization, 30 experiments were carried out, where the parameters used by the 

algorithm were varied to observe which combination generates a better result, which is presented 

in Table 4.13. 

Age/Heart 

rate 
VeryLow Low Normal High VeryHigh 

Child Low Low Excellent Excellent AboveAV 

Young Low BelowAV Excellent AboveAV VeryHigh 

Adult Low BelowAV Excellent AboveAV VeryHigh 

Elder Low BelowAV Excellent VeryHigh VeryHigh 
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Fig. 4.11  BSA individual representation in FIS with trapezoidal MFs 

Trapezoidal membership functions representation is illustrated in Fig. 4.11. In the same way, 

the Gaussian membership functions representation is presented in Fig 4.12. The numbers in both 

figures represent the points in the parameters of the membership functions in the fuzzy systems, 

that are adjusted by the algorithm. 

 

 

Fig. 4.12 BSA individual representation in FIS with Gaussians MFs 

4.2.3 Design and optimization of the IT2FS  

 

The best points of the Type-1 fuzzy system generated by the BSA are used as a reference for 

construct of the interval Type-2 fuzzy system, leaving the footprint of uncertainty symmetrically. 

The inputs of the IT2FS using Trapezoidal MFs are illustrated in Fig. 4.13 and Fig. 4.14 

respectively, whereas the output is illustrated in Fig 4.15. 
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Fig. 4.13 Age Input using trapezoidal MFs 

 

Fig. 4.14 Heart Rate Input using trapezoidal MFs 

 

Fig. 4.15 Heart Rate Level Output using trapezoidal MFs 

 

The inputs of the IT2FS with Gaussian membership functions are represented in Fig. 4.16 and 

Fig. 4.17 respectively, while the output is represented in Fig 4.18. 
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Fig. 4.16 Age Input using Gaussian MFs 

 

 

Fig. 4.17 Heart Rate Input using Gaussian MFs 

 

 

Fig. 4.18 Heart Rate Level using Gaussian MFs 
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As mentioned above, the footprint of uncertainty of the IT2FS was optimized to obtain the 

ideal aperture and thereby provide an accurate classification. The representation of the parameters 

optimized by the algorithm for the fuzzy system using Gaussian MFS is Illustrated in Fig 4.19. 

The representation of the IT2FS using trapezoidal MFs can be illustrated as the Type-1 fuzzy 

system with Fig. 4.11 because when respecting the optimized points of Type-1 fuzzy system, the 

same number of parameters remains to be used. For this Fuzzy System, the rules presented in Table 

4.12 are used. 

 

 

 

Fig. 4.19 BSA representation for the IT2FS using Gaussians MFS 

 

4.2.4 Results obtained from optimizing the Heart Rate fuzzy system 

Next, the results obtained derived from the different optimizations carried out are 

presented: 

 

 

4.2.4.1  Type-1 fuzzy systems results 

 

30 experiments were carried out to optimize the fuzzy systems, in which the parameters of the 

BSA were varying in case. 
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Table  4.13 BSA Combination of parameters in the experiments 

No M pop DimT DimG FQ c1 c2 a1 a2 

1 1000 20 56 28 19 0.5 0.5 2 2 

2 870 24 56 28 28 0.8 0.8 1.5 1.5 

3 714 28 56 28 18 1.2 1.2 0.4 0.4 

4 625 32 56 28 15 1.5 1.5 0.1 0.1 

5 571 36 56 28 6 1.8 1.8 0.8 0.8 

6 574 38 56 28 21 2 2 1 1 

7 454 44 56 28 25 2.33 2.33 1.3 1.3 

8 416 48 56 28 6 2.48 2.48 0.6 0.6 

9 400 50 56 28 28 2.76 2.76 0.9 0.9 

10 357 56 56 28 20 3 3 1.1 1.1 

11 338 60 56 28 10 3.18 3.18 1.9 1.9 

12 322 62 56 28 21 3.22 3.22 0.5 0.5 

13 307 66 56 28 1 3.45 3.45 1.5 1.5 

14 285 70 56 28 13 3.56 3.56 0.7 0.7 

15 278 72 56 28 2 4 4 1.3 1.3 

16 256 78 56 28 24 0.4 0.4 1.8 1.8 

17 250 80 56 28 19 0.7 0.7 0.3 0.3 

18 235 86 56 28 1 1.15 1.15 0.9 0.9 

19 227 88 56 28 24 1.34 1.34 1 1 

20 208 96 56 28 22 1.45 1.45 2 2 

21 202 100 56 28 15 1.67 1.67 0.6 0.6 

22 166 120 56 28 4 1.78 1.78 0.3 0.3 

23 133 150 56 28 16 1.92 1.92 1.5 1.5 

24 111 180 56 28 2 2.18 2.18 1.2 1.2 

25 100 200 56 28 2 2.39 2.39 1.8 1.8 

26 95 210 56 28 21 2.56 2.56 0.7 0.7 

27 90 220 56 28 22 2.83 2.83 0.9 0.9 

28 87 230 56 28 15 3.4 3.4 1.5 1.5 

29 83 240 56 28 19 3.7 3.7 1.7 1.7 

30 80 250 56 28 20 4 4 2 2 
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These parameters are listed in Table 4.13, where M are the iterations, pop corresponds to the 

population of birds, DimT is the number of dimensions for the FIS that use trapezoidal MFs, DimG 

the dimensions for the FIS that use Gaussian MFs, FQ (FL) represents the frequency of bird 

behavior, c1 is the cognitive accelerated coefficient, c2 is the social accelerated coefficient, a1 and 

a2 are parameters related to the indirect and direct effect of bird vigilance behavior. 

The parameters that generated the best result are presented in Table 4.14, which were the best 

both in the fuzzy system with Trapezoidal and Gaussian MFs. 

 

 
Table  4.14 Summary of best parameters obtained 

Iterations 285 

Population 70 

DimT 56 

DimG 28 

F. of behavior 13 

Cognitive A.C 3.56 

Social A.C 3.56 

a1 0.7 

a2 0.7 

 

 

It is interesting and extremely important to know the classification percentage in each 

experiment, in such a way that these results are presented in Table 4.15. Column 3 describes the 

results of classification for the fuzzy systems with Trapezoidal MFs, where it is observed that in 

experiments 14 and 28 a 100% classification was obtained and the worst classification was 87.5% 

in the experiment 8. While in column 3 the results of classification for the fuzzy systems with 

Gaussian MFs are presented, observing that experiment 14 was the one that generated a better 

classification with 95%, while the worst classification was also 87.5% in several of the 

experiments performed. The best experiments are writing in bold type. 
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Table  4.15 Experiment with BSA that represents the percentage of classification 

No TrapMFs GaussMFs 

1 97.50% 87.50% 

2 95% 87.50% 

3 97.50% 92.50% 

4 90% 87.50% 

5 97.50% 87.50% 

6 90% 92.50% 

7 92.50% 90% 

8 87.50% 92.50% 

9 92.50% 92.50% 

10 95% 90% 

11 95% 92.50% 

12 90% 95% 

13 92.50% 90% 

14 100% 95% 

15 97.50% 90% 

16 95% 90% 

17 95% 87.50% 

18 97.50% 90% 

19 92.50% 92.50% 

20 95% 92.50% 

21 95% 92.50% 

22 92.50% 85% 

23 95% 90% 

24 95% 87.50% 

25 100% 90% 

26 95% 87.50% 

27 97.50% 92.50% 

28 100% 87.50% 

29 92.50% 90% 

30 90% 92.50% 

 

In summary, the average classification obtained from the 30 experiments is as follows: 

Trapezoidal MFs: 94.58% 

Gaussian MFs: 90.33% 
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The input of the FIS with optimized Trapezoidal MFs are illustrated in Fig. 4.20 and Fig 4.21. 

Likewise, the output of the same fuzzy system is illustrated in Fig. 4.22. 

 

 

Fig. 4.20 Input age optimized using BSA 

 

 

Fig. 4.21 Input Heart Rate Optimized using BSA 

 

 

Fig. 4.22 Heart Rate Level Optimized using BSA 

 

The inputs of the fuzzy System with optimized Gaussian membership functions are presented 

in Fig. 4.23 and Fig 4.24. While the output of said fuzzy system is presented in Fig 4.25. In both 

cases, the adjustment made by the BSA algorithm in each membership function can be observed. 
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Fig. 4.23 Age input using Gaussian MFs optimized 

 

Fig. 4.24  Heart rate input using Gaussian MFs optimized 

 

Fig. 4.25 Heart rate level output using Gaussian MF optimized 

 

Tests are carried out with the CSA algorithm, to analyze if it provides better results than the 

BSA algorithm. Similarly, 30 experiments were performed taken the parameters listed in Table 

4.13. The percentage of classification generated by each fuzzy system is obtained, which is 

presented in Table 4.16, where it is observed that for the classification of fuzzy systems with 

Trapezoidal MFs, which is found in column 2, it was 97.5% in experiment 22, while for the 

classification with Gaussian MFs, which are found in column 3, it was 92.5% in experiment 21. 

For the optimization of both MFs, the worst classification was 87.5% in several of the experiments 

performed. 
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Table  4.16 Experiment with CSA that represents the percentage of classification 

No TrapMF GaussMF 

1 87.5% 87.5% 

2 87.5% 92.5% 

3 87.5% 92.5% 

4 85% 87.5% 

5 87.5% 90% 

6 85% 90% 

7 87.5% 90% 

8 87.5% 90% 

9 87.5% 90% 

10 85% 90% 

11 90% 87.5% 

12 90% 90% 

13 90% 90% 

14 90% 90% 

15 87.5% 90% 

16 85% 90% 

17 87.5% 90% 

18 90% 90% 

19 87.5% 87.5% 

20 90% 87.5% 

21 90% 92.5% 

22 97.5% 90% 

23 90% 90% 

24 90% 90% 

25 87.5% 87.5% 

26 87.5% 87.5% 

27 90% 90% 

28 87.5% 90% 

29 87.5% 90% 

30 87.5% 90% 

 

As an average of the 30 experiments, the following was obtained: 

Trapezoidal MFs: 88.33% 

Gaussian MFs: 89.66% 

The comparison of the averages obtained from the optimization by CSA and BSA are 

presented in Table 4.17, it is observed that the highest percentage of classification is contained by 

the algorithm BSA for the two membership functions used. 
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Table  4.17 BSA and CSA comparison of averages 

Trapezoidal MFs Gaussians MFs 

BSA CSA BSA CSA 

94.58% 88.33% 90.33% 89.66% 

 

4.2.4.2  Optimization of the IT2FS 

 

In the same way that the optimization realized in the Type-1 fuzzy system, for the IT2FS, 30 

different experiments were performed, using the parameters presented in Table 4.13. The best 

classification was given by the fuzzy system with Trapezoidal MFs generated in Experiment 21 

with 97.5% classification. Table 4.18 presents the summary of the best parameters obtained. 

 
Table  4.18 Summary of the best parameters obtained for Trapezoidal MFs 

Iterations 202 

Population 100 

DimT 56 

F. of the behavior 15 

Cognitive A.C 1.67 

Social A.C 1.67 

a1 0.6 

a2 0.6 

 

For the optimization of the IT2FS with Gaussian membership functions, 100% classification 

was obtained with experiment 28. The parameters of this experiment are presented in Table 4.19. 

 
Table  4.19 Summary of the best parameters obtained for Gaussian MFs 

Iterations 87 

Population 230 

DimG 28 

F. of the behavior 15 

Cognitive A.C 3.4 

Social A.C 3.4 

a1 1.5 

a2 1.5 
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The classification percentages of the 30 experiments for both IT2FS are presented in Table 

4.20. On the contrary, with was observed in the optimization of Type-1 FS, for IT2FS using 

Trapezoidal MFs, the best classification obtained was 97.4% in experiment 21, while optimizing 

the Gaussian MFs 100% classification was obtained in experiment 28. 

 
Table  4.20 Experiment with CSA that represents the percentage of classification 

No TrapMF GaussMF 

1 92.50% 92.50% 

2 92.50% 90% 

3 92.50% 87.50% 

4 95% 90% 

5 92.50% 87.50% 

6 92.50% 92.50% 

7 92.50% 95% 

8 92.50% 90% 

9 92.50% 92.50% 

10 92.50% 95% 

11 92.50% 97.50% 

12 92.50% 87.50% 

13 92.50% 95% 

14 92.50% 92.50% 

15 95% 92.50% 

16 92.50% 85% 

17 95% 92.50% 

18 92.50% 92.50% 

19 92.50% 92.50% 

20 95% 97.50% 

21 97.50% 90% 

22 87.50% 97.50% 

23 92.50% 100% 

24 92.50% 92.50% 

25 92.50% 87.50% 

26 92.50% 90% 

27 92.50% 97.50% 

28 92.50% 100% 

29 92.50% 97.50% 

30 95% 92.50% 

 

For the IT2FS using Trapezoidal membership functions, the average classification was 

92.92%, whereas for the IT2FS was obtained an average of 92.78% classification. 
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The optimized footprint of uncertainty is presented as follows: 

 

In Fig. 4.26 and Fig. 4.27 the inputs are presented, likewise, the output is illustrated in Fig 

4.28. 

 

 

Fig. 4.26 Age input sing trapezoidal MFs optimized for BSA 

 

Fig. 4.27 Heart rate input using trapezoidal MFs optimized for BSA 

 

Fig. 4.28 Heart rate level output using trapezoidal MFs optimized for BSA 

 

The optimized Gaussian membership functions are presented as follows: 

Both inputs are illustrated in Fig. 4.29 and Fig. 4.30, whereas the output is illustrated in Fig. 

4.31. It can be observed that the adjustment in the footprint of uncertainty is noticeable. 
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Fig. 4.29 Age input using Gaussian MFs optimized for BSA 

 

Fig. 4.30 Heart rate input using Gaussian MFs optimized for BSA 

 

Fig. 4.31 Heart rate level output using Gaussian MFs optimized for BSA 

 

The CSA algorithm is used to compare whether it generates better results than the BSA 

algorithm, for this, 30 experiments were realized, using also the parameters of Table 4.13. The 

classification of each of the generated IT2FS is obtained, which are presented in Table 4.21. Where 

it can be analyzed that the best classification is provided in experiment 1 with 92.50%, for the 

Trapezoidal MFs, while the best classification for the fuzzy systems with Gaussian MFs was 95%. 

The average classification in fuzzy systems that used trapezoidal MFs was 92.83%, whereas 

for fuzzy systems with Gaussian MFs it was 88.33%. Table 4.22 presents the comparison of the 

averages obtained by each algorithm and for both membership functions, it can be determined that 

in both cases a higher average is obtained with the BSA algorithm. 
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Table  4.21 Experiment with CSA that represents the percentage of classification 

No TrapMF GaussMF 

1 92.50% 92.50% 

2 90% 92.50% 

3 90% 92.50% 

4 90% 95% 

5 90% 92.50% 

6 90% 95% 

7 90% 92.50% 

8 90% 92.50% 

9 90% 92.50% 

10 90% 87.50% 

11 90% 95% 

12 90% 92.50% 

13 90% 95% 

14 90% 92.50% 

15 90% 95% 

16 90% 92.50% 

17 90% 95% 

18 90% 95% 

19 90% 92.50% 

20 90% 95% 

21 90% 95% 

22 90% 95% 

23 90% 92.50% 

24 90% 92.50% 

25 90% 87.50% 

26 90% 92.50% 

27 90% 92.50% 

28 90% 92.50% 

29 90% 87.50% 

30 90% 92.50% 
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Table  4.22 BSA and CSA comparison of averages 

Trapezoidal MFs Gaussians MFs 

BSA CSA BSA CSA 

92.92% 92.83% 92.78% 88.33% 

 

4.2.4.3  Tests performed with the type-1 fuzzy systems 

 

To test the FIS, 15 random patients are used, since the patients in the database generated with 

the patient group do not have much variation in both entries, and it is necessary to ensure that the 

classification is being carried out correctly. Analyzing the information, it is observed that the 

classification is carried out correctly. 

 
Table  4.23 Random patients using for the test 

No. Age 
Heart 

rate 
Real values 

Trapezoidal Gaussian 

Non- 

optimized 

Fuzzy system 

Optimized 

Fuzzy system 

Non- 

optimized 

Fuzzy System 

Optimized 

Fuzzy System 

1 25 84 Excellent Excellent Excellent Excellent Excellent 

2 83 95 Above Avg Excellent Above Avg Above Avg Above Avg 

3 15 114 Above Avg Above Avg Above Avg Above Avg Above Avg 

4 34 72 Excellent Excellent Excellent Excellent Excellent 

5 42 135 Above Avg Above Avg Above Avg Above Avg Above Avg 

6 91 97 Verry High Above Avg Verry High Above Avg Verry High 

7 45 60 Below Avg Below Avg Below Avg Excellent Excellent 

8 56 87 Excellent Excellent Excellent Above Avg Excellent 

9 75 102 Verry High Verry High Verry High Verry High Verry High 

10 9 120 Excellent Excellent Excellent Excellent Excellent 

11 14 92 Excellent Excellent Excellent Excellent Excellent 

12 38 78 Excellent Excellent Excellent Excellent Excellent 

13 29 80 Excellent Excellent Excellent Excellent Excellent 

14 21 62 Excellent Excellent Excellent Excellent Excellent 

15 6 115 Excellent Excellent Excellent Excellent Excellent 

 

 

The patient data used by the fuzzy systems are presented in columns 2 and 3 of Table 4.23. 

Likewise, it is observed in columns 5 to column 8 the results of the optimized and non-optimized 

fuzzy systems are presented. Analyzing the results of the Trapezoidal fuzzy systems, with the non-

optimized FIS classifies 13 patients in correct form, whereas the optimized FIS classifies 15 

patients in correct form. For Gaussian membership functions, the non-optimized fuzzy system 
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classifies 12 patients in correct form, while the optimized fuzzy system classifies 14 patients in 

correct form. Incorrectly classified patients are written in italics. Fuzzy systems are tested with 20 

patients from the generated database, with fuzzy systems with Trapezoidal MFs, the non-optimized 

correctly classified 19 patients, and the same classification is obtained with the optimized one. 

With fuzzy systems using Gaussian MFs, it also classifies 19 patients in correct form, whereas the 

optimized fuzzy system classifies all patients correctly. Table 4.24 presents the aforementioned 

information. 

 
Table  4.24 Real patients using for the test 

    Trapezoidal Gaussian 

No. Age 
Heart 

rate 
Real values 

Non- 

optimized 

Fuzzy system 

Optimized 

Fuzzy system 

Non- 

optimized 

Fuzzy system 

Optimized 

Fuzzy 

system 

1 46 75 Excellent Excellent Excellent Excellent Excellent 

2 28 88 Excellent Excellent Excellent Excellent Excellent 

3 30 69 Excellent Excellent Excellent Excellent Excellent 

4 33 59 Below Avg Below Avg Below Avg Excellent Below Avg 

5 31 68 Excellent Excellent Excellent Excellent Excellent 

6 32 71 Excellent Excellent Excellent Excellent Excellent 

7 32 66 Excellent Excellent Excellent Excellent Excellent 

8 27 66 Excellent Excellent Excellent Excellent Excellent 

9 31 72 Excellent Excellent Excellent Excellent Excellent 

10 30 76 Excellent Excellent Excellent Excellent Excellent 

11 32 81 Excellent Excellent Excellent Excellent Excellent 

12 28 76 Excellent Excellent Excellent Excellent Excellent 

13 31 85 Excellent Excellent Excellent Excellent Excellent 

14 26 85 Excellent Excellent Excellent Excellent Excellent 

15 31 77 Excellent Excellent Excellent Excellent Excellent 

16 29 77 Excellent Excellent Excellent Excellent Excellent 

17 45 69 Excellent Excellent Excellent Excellent Excellent 

18 27 63 Excellent Excellent Excellent Excellent Excellent 

19 25 107 Above Avg Above Avg Above Avg Above Avg Above Avg 

20 25 95 Above Avg Excellent Excellent Excellent Above Avg 
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4.2.4.4 Tests performed using IT2FS 

 

Interval Type-2 fuzzy systems are tested to compare the results, and for this were used also, 

15 random patients. Fuzzy systems with non-optimized and optimized membership functions 

classify 13 patients in correct form, whereas IT2FS with non-optimized Gaussian MFs, 12 patients 

were classified in correct form, whereas the optimized classifies 15 patients in the correct form. In 

Table 4.25 this information can be analyzed. 

 
Table  4.25 IT2FS test using random patients 

    Trapezoidal Gaussian 

No. Age 
Heart 

Rate  

Real 

Value 

Non- 

optimized 

Fuzzy System 

Optimized 

Fuzzy System 

Non- 

optimized 

Fuzzy System 

Optimized 

Fuzzy System 

1 25 84 Excellent Excellent Excellent Excellent Excellent 

2 83 95 Above Avg Above Avg Above Avg Above Avg Above Avg 

3 15 114 Above Avg Above Avg Above Avg Above Avg Above Avg 

4 34 72 Excellent Excellent Excellent Excellent Excellent 

5 42 135 Above Avg Above Avg Above Avg Above Avg Above Avg 

6 91 97 Verry High Above Avg Verry High Above Avg Verry High 

7 45 60 Below Avg Excellent Excellent Excellent Below Avg 

8 56 87 Excellent Excellent Excellent Above Avg Excellent 

9 75 102 Verry High Verry High Verry High Verry High Verry High 

10 9 120 Excellent Excellent Excellent Excellent Excellent 

11 14 92 Excellent Excellent Above Avg Excellent Excellent 

12 38 78 Excellent Excellent Excellent Excellent Excellent 

13 29 80 Excellent Excellent Excellent Excellent Excellent 

14 21 62 Excellent Excellent Excellent Excellent Excellent 

15 6 115 Excellent Excellent Excellent Excellent Excellent 

 

 

Testing the 15 real patients with the IT2FS, the optimized and non-optimized FIS with 

Trapezoidal MFs classifies 19 patients in correct form, as well as the optimized fuzzy system. For 

the fuzzy system non-optimized that use Gaussian MFs, 18 patients are classified in correct form, 

while with the optimized FIS, 20 patients are classified correctly. This information can be analyzed 

in Table 4.26. 

 

 



Chapter 4. Study cases 

- 66 - 

 

Table  4.26  IT2FS test for real patients 

No. Age 
Heart 

Rate 

Real 

Values 

Trapezoidal Gaussian 

No optimized 

Fuzzy system 

Optimized 

Fuzzy system 

No optimized 

Fuzzy system 

Optimized 

Fuzzy system 

1 46 75 Excellent Excellent Excellent Excellent Excellent 

2 28 88 Excellent Excellent Excellent Excellent Excellent 

3 30 69 Excellent Excellent Excellent Excellent Excellent 

4 33 59 Below Avg Excellent Below Avg Excellent Below Avg 

5 31 68 Excellent Excellent Excellent Excellent Excellent 

6 32 71 Excellent Excellent Excellent Excellent Excellent 

7 32 66 Excellent Excellent Excellent Excellent Excellent 

8 27 66 Excellent Excellent Excellent Excellent Excellent 

9 31 72 Excellent Excellent Excellent Excellent Excellent 

10 30 76 Excellent Excellent Excellent Excellent Excellent 

11 32 81 Excellent Excellent Excellent Excellent Excellent 

12 28 76 Excellent Excellent Excellent Excellent Excellent 

13 31 85 Excellent Excellent Excellent Excellent Excellent 

14 26 85 Excellent Excellent Excellent Excellent Excellent 

15 31 77 Excellent Excellent Excellent Excellent Excellent 

16 29 77 Excellent Excellent Excellent Excellent Excellent 

17 45 69 Excellent Excellent Excellent Excellent Excellent 

18 27 63 Excellent Excellent Excellent Excellent Excellent 

19 25 107 Above Avg Above Avg Above Avg Above Avg Above Avg 

20 25 95 Above Avg Above Avg Above Avg Excellent Above Avg 

 

Table 4.27 presents a summary of the classification percentages of the fuzzy systems tested in 

the fifteen random patients. 

Table  4.27 Summary of classification with Type-1 and IT2FS using random patients 

Non-optimized T1FS Optimized T1FS Non-optimized IT2FS Optimized IT2FS 

Trapezoidal Gaussian Trapezoidal Gaussian Trapezoidal Gaussian Trapezoidal Gaussian 

86.6% 80% 100% 93.3% 86.6% 80% 86.6% 100% 

 

Table 4.28 presents a summary of the classification percentage of the fuzzy systems using 20 

real patients. 

 

Table  4.28 Summary of classification with Type-1 and IT2FS using random patients 

Non-optimized T1FS Optimized T1FS Non-optimized IT2FS Optimized IT2FS 

Trapezoidal Gaussian Trapezoidal Gaussian Trapezoidal Gaussian Trapezoidal Gaussian 

95% 90% 95% 100% 95% 90% 100% 100% 
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The results generated for Type-1 and IT2FS using Gaussian MFs provides 100% of 

classification in both groups of patients studied. Analyzing Table 4.27 and Table 4.28, it is 

interesting to mention that with the non-optimized fuzzy system using Gaussian MFs it obtained 

only 80% of correct classification. 

 

4.3 Optimization of the modular neural network to obtain the trend of the blood pressure 

 

For this third case study, the optimization of the modular neural network is carried out to 

obtain the trend of blood pressure, of which the methodology is explained as follows: 

 

4.3.1 Proposed method for optimization of the modular neural network 

 

In this study case of the research work, the optimization of the first part of the neuro-fuzzy 

model is performed, which corresponds to the modular neural network to obtain the blood pressure 

trend. The first module is given as input the systolic pressure readings, the second module the 

diastolic pressure readings, and the third module the heart rate readings of the patient group. This 

information will be trained by the modules of the modular neural network to learn its behavior and 

obtain the behavior trend as an output. To perform the optimization, two metaheuristics are used 

to test its performance and observe with which a better result is obtained, the first is the BSA 

algorithm, and the second the FPA algorithm. What is sought with this optimization is the 

architecture that generates the best result. Speaking of a specific form, it seeks to optimize the 

hidden layers and the number of neurons per layer. From previous experience, it is limited to two 

hidden layers and 30 neurons per layer, because using more causes overtraining of the modular 

neural network. Each of the metaheuristics used provides the architecture with which the lowest 

error has been obtained, for this the Mean Square Error is used as an objective function, which can 

be found in equation 4.1. 

 

4.3.2 Results of the optimization made to the modular neural network 

 

This section presents the results of the optimization of the modular neural network using both 

metaheuristics. 
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4.3.2.1 Optimization of modular neural network using BSA 

 

30 experiments are carried out to test this first metaheuristic, where parameter variation was 

carried out in each experiment, which is presented in Table 4.29, and which were described in 

section 4.2. 

Table  4.29 BSA parameters for each experiment 

Parameters 

No Ind. Iter a1 a2 FQ c1 c2 dim 

1 10 800 0.8 0.8 2 0.3 0.3 4 

2 12 667 0.3 0.3 11 1.4 1.4 4 

3 14 571 1.2 1.2 6 2 2 4 

4 15 533 1.9 1.9 14 4.3 4.3 4 

5 18 444 2 2 14 0.1 0.1 4 

6 20 400 0.1 0.1 13 1.6 1.6 4 

7 22 364 1.6 1.6 6 3.4 3.4 4 

8 23 348 1.1 1.1 10 2.3 2.3 4 

9 25 320 0.1 0.1 1 0.6 0.6 4 

10 28 286 1 1 13 0.8 0.8 4 

11 30 267 0.7 0.7 7 1 1 4 

12 31 258 1.5 1.5 12 3.6 3.6 4 

13 34 235 1.3 1.3 6 0.2 0.2 4 

14 36 222 0.6 0.6 4 4 4 4 

15 39 205 1.8 1.8 11 2.6 2.6 4 

16 40 200 1.4 1.4 14 1.9 1.9 4 

17 42 190 0.9 0.9 6 0.4 0.4 4 

18 43 186 2 2 7 1.3 1.3 4 

19 45 178 1.7 1.7 5 0.7 0.7 4 

20 47 170 0.2 0.2 15 4.1 4.1 4 

21 49 163 0.4 0.4 6 2.5 2.5 4 

22 51 157 1.3 1.3 2 3.8 3.8 4 

23 52 154 1.8 1.8 4 0.5 0.5 4 

24 54 148 1.5 1.5 14 1.4 1.4 4 

25 58 138 1 1 13 2.7 2.7 4 

26 60 133 2 2 13 3.1 3.1 4 

27 62 129 0.6 0.6 14 0.9 0.9 4 

28 66 121 1.4 1.4 6 1.2 1.2 4 

29 68 118 1.9 1.9 8 3.7 3.7 4 

30 70 114 0.8 0.8 14 0.6 0.6 4 
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Table  4.30 Architectures generated by the BSA for the systolic module 

Systolic Module 

No Layers 
Neurons 

Epochs AVG Error. 
Layer1 Layer2 

1 2 12 21 444 0.56 

2 1 16  688 0.47 

3 1 10  280 1.4 

4 1 20  700 1.24 

5 1 10  396 0.76 

6 1 14  61 0.54 

7 2 21 14 347 1.86 

8 2 29 30 151 0.64 

9 1 11  503 0.5 

10 1 7  340 0.48 

11 1 16  540 0.47 

12 1 7  114 0.73 

13 1 15  338 0.86 

14 1 14  320 0.81 

15 2 30 1 183 6.53 

16 1 18  339 0.37 

17 1 12  346 0.49 

18 1 11  278 0.53 

19 2 29 29 685 0.89 

20 1 24  432 0.66 

21 1 15  167 0.69 

22 1 14  271 0.7 

23 1 15  422 0.5 

24 1 15  246 0.49 

25 2 1 9 64 0.61 

26 2 25 8 117 0.72 

27 1 15  307 0.55 

28 1 10  423 0.51 

29 1 18  208 0.81 

30 2 21 19 443 0.58 

 

First, the optimization of the module corresponding to the systolic pressure is carried out. Table 

4.30 presents the variations of the architecture made by the BSA in the hidden layers and the 
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number of neurons per each hidden layer, in the same way, the error obtained from performing 

each experiment is presented in the last column. 

 
Table  4.31 Architectures generated by the BSA for the diastolic module 

Diastolic Module 

No Layer 
Neurons 

Epochs AVG Error 
Layer1 Layer2 

1 2 2 13 522 0.003 

2 1 4  687 0.004 

3 2 15 17 111 0.004 

4 1 19  205 0.023 

5 1 19  361 0.007 

6 1 25  117 0.006 

7 1 29  477 0.004 

8 2 22 8 430 0.131 

9 2 7 3 482 0.004 

10 1 28  677 0.003 

11 2 30 16 488 0.003 

12 2 21 2 205 0.004 

13 2 9 20 700 0.003 

14 2 13 18 469 0.012 

15 2 13 17 495 0.01 

16 2 25 8 185 0.003 

17 2 8 6 448 0.004 

18 1 11  645 0.003 

19 2 29 2 417 0.004 

20 1 7  438 0.006 

21 1 4  625 0.003 

22 1 28  283 0.004 

23 1 24  238 0.009 

24 2 4 13 566 0.004 

25 1 14  268 0.004 

26 2 23 1 522 0.003 

27 1 19  287 0.003 

28 2 30 11 252 0.004 

29 2 4 5 565 0.003 

30 2 7 22 270 0.004 
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It can be analyzed that the best result was given in experiment 17 with an average error of 0.49 

which is highlighted in bold, while the worst experiment was the number 15 with a mean error of 

6.53 and which is highlighted with italics. 

 
Table  4.32 Architectures generated by the BSA for the heart rate module 

Heart rate module 

No Layer 
Neurons 

Epochs AVG Error 
Layer1 Layer2 

1 1 22 
 

665 0.003 

2 1 25 
 

637 0.003 

3 1 7 
 

364 0.004 

4 1 10 
 

144 0.004 

5 2 13 27 688 0.005 

6 2 6 4 493 0.003 

7 1 13 
 

175 0.003 

8 2 30 17 422 0.003 

9 1 27 
 

138 0.003 

10 2 28 27 180 0.003 

11 2 8 20 472 0.004 

12 2 24 9 540 0.214 

13 1 8 
 

611 0.003 

14 2 17 5 335 0.203 

15 1 17 
 

229 0.003 

16 1 17 
  

0.008 

17 2 24 21 221 0.003 

18 2 13 14 513 0.004 

19 2 4 15 659 0.002 

20 1 6 
 

352 0.004 

21 2 14 22 510 0.246 

22 2 26 23 464 0.003 

23 1 21 
 

52 0.003 

24 2 27 3 505 0.004 

25 2 28 16 464 0.003 

26 2 8 10 577 0.008 

27 2 10 17 297 0.003 

28 2 18 29 148 0.004 

29 1 8 
 

483 0.015 

30 2 28 26 552 0.015 
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The second experiment carried out corresponds to the optimization of the module that generates 

the trend of diastolic pressure, in which variation is made in the parameters in each experiment, 

using those presented in Table 4.29. The results obtained are presented in Table 4.31, where it can 

be analyzed that the best experiment was 29 with an error of 0.003 which is highlighted in bold, 

while the worst was experiment 8 with a generated error of 0.131 which is highlighted in italics. 

The last experiment carried out corresponds to the optimization of the module to obtain the 

heart rate trend, in which variation is made in the parameters in each experiment, using those 

presented in Table 4.29. The results obtained are presented in Table 4.32, where it can be analyzed 

that the best experiment was 19 with an error of 0.002 which is highlighted in bold, while the worst 

was experiment 12 with a generated error of 0.214 which is highlighted in italics. 

In summary, the best architectures generated by the BSA algorithm are presented in Table 

4.33. 

 
Table  4.33 Summary of the best architectures generated by the BSA 

Systolic Diastolic Heart Rate 

Layers 1 Layers 2 Layers 2 

Neurons per 

layers 

12 Neurons per 

layers 

4    

5 

Neurons per 

layers 

4 

15 

Epochs 346 Epochs 565 Epochs 659 

MSE 0.8133 MSE 0.1273 MSE 0.1883 

 

 

4.3.2.2 Optimization of modular neural network using FPA 

 

30 experiments are carried out to test the FPA algorithm, where parameter variation was 

performed in each experiment, which is presented in Table 4.34. The parameters that the algorithm 

uses are the following: 

ind represents the number of individuals, iteration is the number of iterations, Dim is the 

number of dimensions, which is fixed since this is the parameter that moves the architecture of the 

neural network and p represents the switching probability. 
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Table  4.34 Parameters used by the FPA in each experiment 

Parameters 

No Ind. Iter Dim Prob. 

1 10 800 4 0.3 

2 12 667 4 0.7 

3 14 571 4 0.9 

4 15 533 4 0.8 

5 18 444 4 0.2 

6 20 400 4 0.5 

7 22 364 4 0.4 

8 23 348 4 0.8 

9 25 320 4 0.9 

10 28 286 4 0.7 

11 30 267 4 0.6 

12 31 258 4 0.4 

13 34 235 4 0.2 

14 36 222 4 0.1 

15 39 205 4 0.8 

16 40 200 4 0.8 

17 42 190 4 0.2 

18 43 186 4 0.3 

19 45 178 4 0.7 

20 47 170 4 0.6 

21 49 163 4 0.8 

22 51 157 4 0.3 

23 52 154 4 0.6 

24 54 148 4 0.9 

25 58 138 4 0.1 

26 60 133 4 0.8 

27 62 129 4 0.7 

28 66 121 4 0.9 

29 68 118 4 0.4 

30 70 114 4 0.8 

 

The first experimentation carried out is the one corresponding to the module to obtain the 

trend of systolic pressure. Table 4.35 presents the variations of the architecture made by the FPA 

in the hidden layers and the number of neurons per each hidden layer, in the same way, the error 

obtained from performing each experiment is presented in the last column. 
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Table  4.35 Architectures generated by the FPA for the systolic pressure module 

Systolic module 

No Layer 
Neurons 

Epochs AVG Error 
Layer1 Layer2 

1 2 12 10 362 0.0002 

2 2 17 1 450 0.0002 

3 2 12 13 516 0.0003 

4 2 18 11 604 0.0001 

5 1 3 
 

328 0.0002 

6 2 30 26 98 0.0004 

7 1 30 
 

700 0.0009 

8 2 23 24 288 0.0002 

9 2 17 10 591 0.0007 

10 1 7 
 

1 0.0002 

11 1 30 
 

477 0.0005 

12 2 19 30 700 0.0003 

13 1 30 
 

325 0.0004 

14 2 26 30 700 0.0005 

15 1 18 
 

673 0.0007 

16 2 9 20 234 0.0005 

17 2 23 19 70 0.0007 

18 2 11 3 387 0.0016 

19 2 1 11 1 0.0011 

20 1 7 
 

5 0.0005 

21 1 25 
 

700 0.0023 

22 2 17 1 124 0.0007 

23 2 18 11 2 0.0009 

24 1 24 
 

663 0.0011 

25 2 8 1 494 0.0005 

26 1 30 
 

365 0.0012 

27 2 7 13 537 0.0009 

28 2 12 28 150 0.0012 

29 1 1 
 

1 0.0007 

30 1 4 
 

1 0.0013 

 

It can be analyzed that the best result was given in experiment 4 with an average error of 

0.0001 which is highlighted in bold, while the worst experiment was number 21 with a mean error 

of 0.0023 and which is highlighted with italics. 
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Table  4.36 Architectures generated by the FPA for the diastolic pressure module 

Diastolic Module 

No Layers Neurons Epochs AVG Error 

Layer1 Layer2 

1 2 30 6 118 0.0000379 

2 1 3 
 

295 0.000034 

3 1 7 
 

658 0.0000513 

4 1 30 
 

20 0.0000537 

5 2 5 26 120 0.0000834 

6 2 18 4 465 0.000109 

7 2 6 9 208 0.000064 

8 2 10 6 700 0.000062 

9 2 30 12 1 0.0000499 

10 2 9 16 50 0.0000897 

11 1 5 
 

538 0.000118 

12 1 7 21 363 0.000193 

13 2 13 16 554 0.000108 

14 1 28 
 

115 0.00012 

15 1 30 
 

458 0.000127 

16 1 19 
 

700 0.0000823 

17 2 3 25 455 0.000137 

18 2 16 5 180 0.000134 

19 1 19 
 

405 0.000199 

20 1 30 
 

6 0.000178 

21 2 19 6 455 0.03701 

22 1 6 
 

15 0.00017 

23 1 21 
 

328 0.000161 

24 1 12 
 

464 0.000168 

25 1 30 
 

471 0.000234 

26 2 23 26 123 0.000218 

27 1 16 
 

284 0.000204 

28 1 30 
 

5 0.000284 

29 1 30 
 

693 0.000203 

30 2 14 2 512 0.000204 

 

The second experiment corresponds to the optimization of the module to obtain the trend of 

the diastolic pressure, in which variation is made in the parameters in each experiment, using those 
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presented in Table 4.34. The results obtained are presented in Table 4.36, where it can be analyzed 

that the best experiment was 1 with an error of 3.79E-05 which is highlighted in bold, while the 

worst was experiment 21 with an error generated of 0.03701 which is highlighted in italics. 

 
Table  4.37 Architectures generated by the FPA for the heart rate module 

Heart rate module 

No Layers Neurons Epochs AVG Error 

Layer1 Layer2 

1 1 21 
 

693 0.0002 

2 1 30 
 

587 0.0002 

3 1 29 
 

261 0.0005 

4 1 8 
 

689 0.0003 

5 2 30 14 203 0.0006 

6 2 30 30 1 0.0007 

7 2 25 28 700 0.0007 

8 1 30 
 

288 0.0003 

9 2 10 18 332 0.0004 

10 2 22 15 437 0.001 

11 2 30 30 315 0.0007 

12 1 29 
 

398 0.0007 

13 1 24 
 

530 0.0008 

14 2 30 17 700 0.0012 

15 2 23 13 255 0.0007 

16 2 5 30 674 0.001 

17 2 1 7 600 0.0012 

18 2 1 9 252 0.001 

19 1 30 
 

71 0.0008 

20 1 25 
 

108 0.0012 

21 1 14 
 

601 0.002 

22 1 30 
 

639 0.0009 

23 2 14 16 672 0.0013 

24 2 1 9 700 0.0013 

25 1 20 
 

683 0.0015 

26 2 8 22 409 0.0018 

27 1 2 
 

560 0.0015 

28 1 25 
 

15 0.0014 

29 1 14 
 

248 0.0015 

30 2 19 12 354 0.0015 
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The third experiment carried out corresponds to the optimization of the module to obtain the 

heart rate trend, in which variation is made in the parameters in each experiment, using those 

presented in Table 4.34. The results obtained are presented in Table 4.37, where it can be analyzed 

that the best experiment was 1 with an error of 0.0002 which is highlighted in bold, while the worst 

was experiment 21 with a generated error of 0.002 which is highlighted in italics. 

In summary, the best architectures generated by the FPA algorithm are presented in Table 4.38. 

 
Table  4.38 Summary of the best architectures generated by the FPA 

Systolic Diastolic Heart rate 

Layers 2 Layers 2 Layers 1 

Neurons per 

layer 

18 

 11 

Neurons per 

layer 

30  

6 

Neurons per 

layer 

21 

Epochs 604 Epochs 118 Epochs 693 

MSE 1.267 MSE 0.446 MSE 0.602 

 

 

4.3.2.3 Comparative analysis of the results 

 

Once the best architectures are obtained, the training that generates the best results is used to 

perform the simulation. 36 patients from the database to perform the test are taken, the readings 

obtained by the ABPM of these being the input to each module of the modular neural network. 

Experiments for the systolic pressure module with 15 patients are presented in Table 4.39, 

according to the expert, there can be a variation in the trend of 10 points, and as can be analyzed, 

good results are obtained in most cases to observe that less error is obtained with the BSA 

algorithm. 
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Table  4.39 Simulation of the optimized MNN using 15 patients for the systolic module 

  
BSA FPA 

No. Real Trend ABS E % success Trend ABS E % success 

1 106 106 0 100 103 3 97 

2 107 110 3 97 103 4 94 

3 134 131 3 98 129 5 76 

4 121 117 4 97 114 7 85 

5 106 109 3 97 92 14 95 

6 110 109 1 99 117 8 85 

7 130 133 3 98 132 1 74 

8 117 125 8 94 120 1 78 

9 117 117 0 100 121 4 83 

10 113 119 6 95 117 2 81 

11 121 118 3 98 119 2 82 

12 123 120 3 98 120 3 81 

13 102 100 2 98 97 5 99 

14 121 125 4 97 127 2 76 

15 117 120 3 98 122 2 80 

 

 

 

In Table 4.40 the experiments for the diastolic pressure modulus with 15 patients are 

presented. It is observed that good results are obtained in most cases, in addition to taking into 

account that less error is obtained with the BSA algorithm. 
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Table  4.40 Simulation of the optimized MNN using 15 patients for the diastolic module 

  
BSA FPA 

No. Real Trend ABS E % success Trend ABS E % success 

1 62 65 3 95 62 0 100 

2 61 61 0 100 61 0 100 

3 62 62 0 100 63 1 98 

4 77 76 1 99 72 5 94 

5 65 65 0 100 59 6 91 

6 69 73 4 95 69 0 100 

7 86 84 2 98 88 2 98 

8 73 70 3 96 76 3 96 

9 54 55 1 98 50 4 93 

10 72 71 1 99 74 2 97 

11 78 80 2 98 84 6 93 

12 82 87 5 94 80 2 98 

13 62 66 4 94 61 1 98 

14 70 66 4 94 67 3 96 

15 68 67 1 99 68 0 100 

 

 

In Table 4.41 the experiments for the module to obtain the heart rate trend with 15 patients 

are presented. It is observed that good results are obtained in most cases, in addition to taking into 

account that less error is obtained with the BSA algorithm. 
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Table  4.41 Simulation of the optimized MNN using 15 patients for the heart rate module 

  
BSA FPA 

No. Real Trend ABS E. % success Trend ABS E % success 

1 95 93 2 98 99 4 96 

2 69 71 2 97 70 1 99 

3 72 67 5 93 77 5 94 

4 80 85 5 94 84 4 95 

5 73 74 1 99 69 4 95 

6 63 59 4 94 66 3 95 

7 74 73 1 99 74 0 100 

8 71 67 4 94 65 6 92 

9 70 68 2 97 70 0 100 

10 67 65 2 97 68 1 99 

11 77 74 3 96 83 6 93 

12 71 69 2 97 70 1 99 

13 74 75 1 99 72 2 97 

14 70 68 2 97 73 3 96 

15 62 62 0 100 57 5 92 

 

Table 4.42 summarize the percentage of success obtained by both algorithms; if the results are 

analyzed, it can be concluded that the BSA is better compared to the FPA algorithm for the 3 

modules of the modular neural network. 

 
Table  4.42 Percent of success with the optimized MNN 

Systolic Diastolic Heart Rate 

BSA FPA BSA FPA BSA FPA 

96% 84% 98% 96% 97% 95% 

 

Table 4.43 presents the percentage of success obtained by the non-optimized modular neural 

network, where, if we compare the results obtained with the BSA, an improvement is observed. 

 
Table  4.43 Percent of success with the non-optimized MNN 

Systolic Diastolic Heart rate 

94% 89% 95% 
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4.4 Optimization of the artificial neural network used to obtain the risk of developing 

hypertension 

 

For this fourth case study, the optimization of an artificial neural network is carried out to 

obtain the risk of developing hypertension in four years, using the following methodology: 

 

4.4.1 Proposed method for the optimization of the monolithic neural network used to 

obtain the risk of developing hypertension 

 

The proposed method presented in Figure 4.32 has an artificial neural network, which is part 

of a neuro-fuzzy hybrid model described in [71]–[73]; it provides a medical diagnosis derived from 

the blood pressure of different patients. The neural network is inspired by the Framingham Heart 

Study, which offers patients the risk of developing hypertension in an incoming future period. Risk 

factors taken as inputs of the neural network are the following: systolic and diastolic pressure, age, 

gender, body mass index, if the patient is a smoker, and if he has hypertensive parents. With the 

information mentioned before the neural network is trained to learn the variation of the risk factors 

in each person to obtain as an output the percentage of risk that the person has in developing 

hypertension in 4 years. 

 

To provide a more accurate diagnosis to patients using the neural network, the optimization 

of its architecture is carried out, and for this, the Flower Pollination Algorithm is used, and from 

which its performance is observed and make a comparison with the Simple Enumeration Method 

(SEM) to observe which one provides better results. The SEM has all the possible architecture 

combinations of neurons per hidden layer and the number of hidden layers. 

 

Different parts of the model have been optimized using another bio-inspired algorithm [74]–

[78]. In this case, the goal was to test the FPA algorithm, which makes the necessary adjustments 

in the architecture of the neural network, this means, that varying the number of hidden layers and 

the number of neurons in the hidden layers, for which a database with 500 patients is used to train 

the neural network in each experiment, this database has the risk factors mentioned before. 
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Fig. 4.32 Model used for optimization of the monolithic neural network 

 

The individuals, which in the case of FPA will be the pollen to make the necessary changes 

in the architecture to obtain the one that provides the lower error when simulating the information. 
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As previously mentioned, the optimization of the architecture of a neural network was carried 

out, the FPA algorithm was used, which adjusted the parameters of the architecture, which were 

the number of hidden layers, due to the complexity of the problem was limited to 2. In addition to 

the number of neurons per hidden layer, which were limited to 30, this is due to the information 

with which we are working.  

 

 
 

Fig. 4.33 Neural Network Architecture representation in FPA 

 

 

In Figure 4.33, the representation of the individuals of the FPA algorithm is presented. The 

objective function used for the optimization was the MSE, to reduce the error in the training, which 

is found in Equation 4.1. 

 

 

4.4.2 Results obtained from the optimization 

 

To analyze its operation and test the performance of the algorithm, 30 experiments are 

performed. Taking into account that the parameters of the algorithm are changed in each 

experiment to observe and analyze its performance and to obtain the best parameters for solve in 

an optimal way. 
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Table  4.44 Parameters used in FPA for each experiment 

Exp Ind Iteration Dim p 

1 10 93 3 0.2 

2 12 78 3 0.7 

3 14 66 3 0.6 

4 16 58 3 0.4 

5 18 52 3 0.1 

6 20 47 3 0.8 

7 22 42 3 0.9 

8 24 39 3 0.3 

9 26 36 3 0.5 

10 28 33 3 0.7 

11 30 31 3 0.2 

12 32 29 3 0.8 

13 34 27 3 0.4 

14 36 26 3 0.5 

15 38 24 3 0.6 

16 40 23 3 0.8 

17 42 22 3 0.6 

18 44 21 3 0.4 

19 46 20 3 0.9 

20 48 19 3 0.2 

21 50 19 3 0.3 

22 52 18 3 0.7 

23 54 17 3 0.8 

24 56 17 3 0.1 

25 58 16 3 0.6 

26 60 16 3 0.2 

27 62 15 3 0.8 

28 64 15 3 0.4 

29 66 14 3 0.5 

30 68 14 3 0.3 

 

In Table 4.44 the variation of the parameters is presented, ind represents the number of 

individuals, iteration is the number of iterations, Dim is the number of dimensions, which is fixed, 

since this is the parameter that moves the architecture of the neural network and p represents the 

switch probability. 
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Table  4.45 FPA Results 

Exp Layers 
Neuros 

L1 

Neuros 

L2 
Epochs Error 

Time in 

minutes 

1 2 6 4 250 5.775E-04 17.76 

2 2 7 3 250 1.215E-03 20.78 

3 2 15 3 250 1.379E-03 16.26 

4 2 8 4 250 1.691E-03 18.50 

5 2 9 3 250 1.007E-03 18.38 

6 2 9 4 250 1.197E-03 17.83 

7 2 4 29 250 1.580E-03 19.21 

8 2 8 4 250 8.410E-04 20.69 

9 2 8 3 250 1.168E-03 17.81 

10 2 10 6 250 9.203E-04 18.14 

11 2 10 3 250 1.886E-03 19.72 

12 2 4 7 250 1.411E-03 18.12 

13 2 6 5 250 8.606E-04 19.33 

14 2 8 3 250 1.184E-03 16.78 

15 2 9 5 250 8.228E-04 21.02 

16 2 10 5 250 1.663E-03 21.03 

17 2 8 6 250 1.751E-03 25.40 

18 2 5 9 250 1.152E-03 21.32 

19 2 6 8 250 2.833E-03 18.64 

20 2 11 4 250 1.734E-03 20.80 

21 2 9 3 250 1.069E-03 18.58 

22 2 7 6 250 1.103E-03 20.71 

23 2 8 5 250 1.321E-03 19.58 

24 2 7 5 250 1.203E-03 23.01 

25 2 10 4 250 1.384E-03 20.03 

26 2 9 4 250 1.561E-03 21.99 

27 2 5 5 250 1.725E-03 19.07 

28 2 11 7 250 2.202E-03 23.58 

29 2 8 4 250 1.422E-03 21.05 

30 2 7 6 250 1.730E-03 22.14 

 

 

Table 4.45 presents the results obtained for each experiment, this means, the variation of the 

architecture made to the neural network by the algorithm, where the number of hidden layers and 

the number of neurons in each hidden layer were changed. In this case, experiment 1 was the one 

with the best-obtained result, which is highlighted in bold with an error of 5.78E-04, and 

experiment 19 being the worst with an error of 2.83E-03, and which is highlighted in italic. 
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Best-obtained architecture is summarized as follows:  

• Number of layers: 2 

• Neurons in hidden layer 1: 6 

• Neurons in hidden layer 2: 4 

 
Table  4.46 Comparison results between non-optimized and optimized neural network 

No Age Gen. BMI Syst. Dias. Smoke H.par Real 
Optimized 

nn 

Non- 

optimized nn 

1 27 M 24.30 122 77 No 0 4 4 4 

2 28 M 23.36 120 81 No 0 5 5 5 

3 28 W 29.76 123 82 No 2 16 16 18 

4 25 M 24.40 114 65 No 0 1 1 1 

5 45 M 24.90 116 75 No 1 6 6 6 

6 31 W 35.26 95 61 No 1 0 0 0 

7 33 M 25.26 130 74 No 2 10 10 11 

8 32 M 29.98 123 76 No 1 7 7 8 

9 25 M 21.70 108 66 No 0 0 0 1 

10 30 M 30.30 123 78 No 0 7 7 7 

11 30 W 21.55 107 61 No 1 1 1 1 

12 32 M 24.49 112 72 No 0 2 2 2 

13 31 W 30.07 112 71 No 2 3 3 3 

14 29 W 21.50 99 62 No 0 0 0 1 

15 31 W 23.40 106 65 No 0 1 1 2 

16 26 W 31.90 126 68 No 0 4 4 4 

17 32 M 31.10 110 68 No 0 1 1 1 

18 30 M 28.91 122 76 No 0 5 5 5 

19 31 W 29.00 114 66 No 2 2 2 3 

20 27 M 22.72 115 72 No 1 2 2 2 

 

Figure 4.34 illustrates the comparison of the targets with the outputs generated by the neural 

network, with these 50 patients the neural network was tested in each iteration of the algorithm, 

where the red line represents the target and the blue line the output generated by the neural network 

at the moment of simulating the information. 

Once having the best architecture, the simulation is carried out with a group of 20 real patients. 

Table 4.46 presents the different risk factors of each one of them and where the comparison of the 

real results of the study is made, with the one obtained by the optimized neural network and the 

non-optimized neural network. 
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Fig. 4.34 Results of training with 50 patients 

 

 

Figure 4.35 illustrates the comparison of the real results with the output generated by the 

neural network for the 20 real patients, where the red line represents the target and the blue line 

the output generated by the neural network at the moment of simulating the information. 

 

 
Fig. 4.35 Results from comparison with real patients 
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In Table 4.47, the statistical parameters of the FPA experiments are presented.  In this, can be 

observed the value of the best and the worst experiments, the average and standard deviation of all 

the 30 experiments that are taken into account for comparison purposes. 

 
Table  4.47 Statistical parameters of experiments with FPA 

Best 0.000577535 

Worst 0.002833456 

Average 0.001386461 

Standard Deviation 0.000457444 

 

In Figure 4.36, the convergence of the first ten experiments using the FPA algorithm are presented, 

it can be observed graphically that experiment 1 is the one where the least error was obtained, 

while that experiment 4 was the worst.  

 

Fig. 4.36 FPA Convergence of experiments 1-10 
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In Figure 4.37, the second set of convergence experiments are illustrated, in this case, experiment 

15 was the one that converged faster, but the error is not the best one obtained, while that 

experiment 19 is the worst of all-30 experiments. 

 

Fig. 4.37 FPA Convergence of experiments 11-20 

Figure 4.38 presents the last set of experiments, for this, experiment 21 is the best, and the worst 

is experiment 28. 

 

Fig. 4.38 FPA Convergence of experiments 21-30 
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4.4.3    Z-test of FPA and ALO vs Simple Enumeration Method 

 

To compare and verify which of the different methods yields the least error, a statistical test 

is performed, using the Z test, which uses the formula 4.2. 

In the first case, the null hypothesis states that the errors obtained by the FPA algorithm are 

greater than or equal to the errors obtained by the simple enumeration method (SEM). While the 

alternative hypothesis states that the errors obtained by the FPA algorithm are less than the errors 

obtained by the SEM. Table 4.48 illustrates a comparison of means between the two methods with 

30 experiments; it can be observed that the FPA obtained a lower error compared with the SEM.   

 
Table  4.48 Comparison results between methods 

MSE FPA SEM 

Average 0.001386461 0.0035578 

Standard Deviation 0.000457444 0.0015705 

Experiments 30 30 

 

Table 4.49 presents the statistical parameters for this test. 

 

 
Table  4.49 Statistical Parameters for FPA vs SEM 

Z test parameters FPA vs SEM 

Test Statistic Value - 7.251 

Critical Value (Zc)  -1.64 

Significance Level (α) 0.05 

H0 µ1 ≥ µ2 

Ha (Claim) µ1 < µ2  

Experiments 30 

 

 

Since it is observed that z test statistic value z= -7.251 is less than the critical value zc = -1.64, 

it is then concluded that the null hypothesis is rejected and the alternative hypothesis is accepted. 

So, it can be concluded that there is sufficient evidence with a 5% level of significance to support 

the claim of the errors obtained by the FPA algorithm are lower than the errors obtained by the 

SEM; in Figure 4.39 the probability distribution graph for this test is illustrated. 
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Fig. 4.39 Plot of the Normal distribution 

 

4.5 Optimization of the modular neural network to obtain the risk of developing a 

cardiovascular event 

 

In the fifth case study, the optimization of a modular neural network is carried out to obtain 

the cardiovascular risk, of which the methodology carried out is explained as follows: 

 

4.5.1 Proposed method for optimizing the modular network for the risk of developing a 

cardiovascular event 

 

This is the last part that was added to the neuro-fuzzy model because the need arises to also 

know the risk that a patient has in developing a cardiovascular event in 10 years, since as has been 

observed in recent times this is one of the leading causes of death worldwide [3], and by being 

able to provide this information to the patient, it gives a diagnosis in time so that the persons can 

change them healthy habits. Another diagnosis that it can give in this part of the model is the age 

of the heart since the cardiologist needs to know it because with this it can be analyzed more clearly 

certain cardiovascular diseases that may occur. To provide the aforementioned diagnoses, a 

modular neural network is used, which consists of 3 modules, which are given as input different 

risk factors such as age, sex, systolic pressure, body mass index, if the patient is a smoker, if  has 

diabetes and if  is undergoing hypertensive treatment, each of these modules will learn the behavior 

of the information provided and as an output from the first module, the risk of developing 

hypertension is obtained in 10 years, the output of the second module corresponds to the age of 

the heart when the patient who consumes hypertensive treatment and the third module provides 

the age of the heart of the patient does not consume the hypertensive treatment, this modularity is 
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carried out because it was difficult for the network to learn the behavior of the heart age if it 

provided information indiscriminately from patients who were using or not using hypertensive 

therapy, and it is necessary to provide a timely diagnosis 

 
Fig. 4.40 Optimization of modular neural network for obtaining the risk of cardiovascular event 

 

Due to the above, the modular neural network is optimized, to find the architecture that 

generates a better diagnosis. To do this, two bio-inspired algorithms are used, to observe its 

performance and analyze which one provides a better result. The algorithms used were the FPA 

and the BSA, which have been used in the different optimizations of the model with good results. 

The architecture parameters to be optimized are the number of hidden layers and the number of 

neurons in each hidden layer, due to previous experience, the search is limited to two hidden layers 

and 30 neurons per hidden layer, since, due to the nature of the information, with more than 30 

neurons, begins to overtrain the modular neural network and provide unwanted results. Each 

module was trained with 250 patients in each iteration and was tested with 50 patients. In Fig. 4.40 

the optimization of the modular neural network is graphically represented. 

To find out which of the architectures provides a better result, the MSE which is found in 

Equation 4.1. 
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4.5.2 Experimentation and results of the optimization  

 

To determine which of the algorithms used gives us a better result, 30 experiments are carried 

out, where the parameters used by each one of them are varied, to determine with which of these 

variants the algorithm efficiently solves the problem provided. 

 
Table  4.50 Parameters used in FPA for each experiment 

No n No. Iter Dim P 

1 15 62 3 0.9 

2 17 55 3 0.3 

3 19 49 3 0.5 

4 21 44 3 0.7 

5 23 40 3 0.3 

6 25 37 3 0.2 

7 27 34 3 0.8 

8 29 32 3 0.6 

9 31 30 3 0.9 

10 33 28 3 0.1 

11 35 27 3 0.4 

12 37 25 3 0.8 

13 39 24 3 0.2 

14 41 23 3 0.7 

15 43 22 3 0.9 

16 45 21 3 0.5 

17 47 20 3 0.3 

18 49 19 3 0.2 

19 51 18 3 0.5 

20 53 18 3 0.9 

21 55 17 3 0.3 

22 57 16 3 0.6 

23 59 16 3 0.8 

24 61 15 3 0.7 

25 63 15 3 0.9 

26 65 14 3 0.4 

27 67 14 3 0.3 

28 69 13 3 0.9 

29 71 13 3 0.5 

30 73 13 3 0.7 

 

 

 



Chapter 4. Study cases 

- 94 - 

 

Table 4.50 presents the parameters of the FPA algorithm, which are described in section 

4.3. 

 
Table  4.51 Parameters variation of BSA for experiments 

No pop M a1 a2 FQ c1 c2 dim 

1 16 58 0.2 0.2 3 0.4 0.4 3 

2 18 52 1.33 1.33 8 0.6 0.6 3 

3 20 47 0.9 0.9 1 1.4 1.4 3 

4 22 42 0.4 0.4 10 1.8 1.8 3 

5 24 39 0.1 0.1 12 0.2 0.2 3 

6 26 36 1.2 1.2 7 1.9 1.9 3 

7 28 33 1 1 6 2 2 3 

8 30 31 1.42 1.42 2 3.48 3.48 3 

9 32 29 0.75 0.75 10 1.22 1.22 3 

10 34 27 1.25 1.25 9 3.2 3.2 3 

11 36 26 1.95 1.95 15 3.15 3.15 3 

12 38 24 0.6 0.6 5 0.8 0.8 3 

13 40 23 1.3 1.3 12 2.84 2.84 3 

14 42 22 0.9 0.9 14 0.5 0.5 3 

15 44 21 1.6 1.6 7 1.44 1.44 3 

16 46 20 1.4 1.4 5 4 4 3 

17 48 19 0.9 0.9 15 0.9 0.9 3 

18 50 19 0.6 0.6 11 1.18 1.18 3 

19 52 18 2 2 14 2.4 2.4 3 

20 54 17 1 1 10 3 3 3 

21 56 17 0.4 0.4 11 0.9 0.9 3 

22 58 16 0.9 0.9 11 2 2 3 

23 60 16 1.6 1.6 5 1.88 1.88 3 

24 62 15 0.4 0.4 6 3.12 3.12 3 

25 64 15 1.2 1.2 7 2.5 2.5 3 

26 66 14 1.8 1.8 2 3.44 3.44 3 

27 68 14 0.7 0.7 5 3.7 3.7 3 

28 70 13 0.5 0.5 11 2.83 2.83 3 

29 72 13 2 2 6 1.56 1.56 3 

30 74 13 1.7 1.7 14 4 4 3 

 

 In the same way, 30 experiments are carried out with the BSA algorithm varying its 

parameters, which are presented in Table 4.51, and which have been described in section 4.2. 
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Table  4.52 Results obtained for each module using FPA 

No 

Module CR Module HAT Module HAW 

Lyr 
Neurons 

Error Lyr 
Neurons 

Error Lyr 
Neurons 

Error 
L1 L2 L1 L2 L1 L2 

1 2 18 2 2.7139E-03 2 2 30 1.0560E-04 1 18  6.1907E-05 

2 2 17 2 2.0452E-03 1 17  1.6883E-04 1 16  6.0907E-05 

3 2 13 2 1.7622E-03 1 12  3.7648E-04 2 2 18 4.9969E-06 

4 2 20 2 2.4270E-03 2 3 22 2.0687E-05 2 2 13 3.8364E-05 

5 2 18 3 2.5873E-03 1 11  2.7427E-04 1 14  2.0338E-04 

6 2 14 2 2.8492E-03 2 2 24 9.7008E-05 2 2 17 1.2372E-04 

7 2 22 2 2.8170E-03 1 9  1.7437E-04 1 2  3.4650E-04 

8 2 12 5 3.7180E-03 1 9  1.5743E-04 1 2  1.1126E-04 

9 2 11 2 3.0731E-03 1 13  2.3490E-05 2 2 24 1.8725E-05 

10 2 13 2 3.5421E-03 1 14  6.5299E-05 1 2  1.5807E-05 

11 2 10 2 3.5495E-03 2 3 28 1.3000E-04 2 2 11 3.2050E-04 

12 2 11 2 3.6995E-03 1 13  1.5528E-04 2 2 25 1.8010E-04 

13 2 20 2 3.8815E-03 2 2 26 2.6078E-04 2 2 29 2.0071E-04 

14 2 19 2 3.4877E-03 2 4 13 2.6881E-04 2 2 30 3.0541E-05 

15 2 22 2 5.5936E-03 1 5  2.4263E-04 2 3 15 2.2829E-04 

16 2 12 3 3.5020E-03 2 2 21 3.0814E-04 1 7  1.9435E-04 

17 2 9 4 3.9976E-03 1 18  2.9908E-04 2 2 17 8.4739E-05 

18 2 16 3 6.4363E-03 1 12  1.7657E-04 1 3  2.6109E-04 

19 2 16 2 3.5655E-03 1 12  1.7728E-04 2 2 13 8.7971E-05 

20 2 15 2 6.8452E-03 1 10  2.8193E-04 2 2 28 9.8195E-06 

21 2 15 3 1.8191E-03 1 22  1.0354E-04 1 2  5.8135E-05 

22 2 12 3 4.5308E-03 2 2 16 8.0574E-05 2 2 14 8.1766E-05 

23 2 14 2 3.2716E-03 2 2 25 2.4468E-04 1 2  3.1255E-05 

24 2 21 2 2.2232E-03 2 2 30 9.0135E-05 1 2  1.1597E-05 

25 2 15 2 3.8664E-03 1 3  2.6500E-04 1 4  1.4851E-05 

26 2 9 5 5.8655E-03 2 2 21 1.1130E-04 1 4  6.5163E-05 

27 2 13 5 4.5445E-03 2 2 26 2.6406E-04 2 2 10 2.0655E-05 

28 2 12 2 3.4840E-03 1 21  2.6028E-04 1 7  2.2507E-04 

29 2 14 2 2.8449E-03 2 5 30 2.0397E-04 1 3  9.1806E-05 

30 2 20 2 2.7755E-03 1 2  3.0767E-04 2 2 27 1.5269E-05 
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The results obtained by the FPA algorithm are presented in Table 4.52, where the number 

of layers and neurons per layer provided by the algorithm can be analyzed, in the same way, the 

error generated when performing each experiment can be observed, which is obtained by testing 

the architectures obtained with 50 patients. For the first module, the best experiment was number 

3, generating an error of 1.7622E-03, in the second module the best experiment was 4 with an error 

of 2.0687E-05 and for the third module the best experiment was the 3 with an error obtained of 

4.9969E-06. 

The best results are marked in bold, while the worst results are marked in italics 

 

Table 4.53 lists the best architectures found by the FPA algorithm for each of the modules. 

To complement the information on the training of the modules, it is necessary to mention that in 

each experiment 250 epochs were used and the Levenberg-Marquard was used as the learning 

algorithm. 

 

Table  4.53 Summary of the best architectures 

 Module CR Module HAT Module HAW 

Number of layers 
2 2 

 

2 

Number of 

neurons per layer 
13, 2 3,22 2,18 

 

The results obtained from using the BSA algorithm for the optimization of each module are 

presented in Table 4.54. Where it can analyze the number of layers and numbers of neurons per 

layer thrown by each experiment performed. The error obtained in each experiment is also 

presented, as with the FPA algorithm, each generated architecture was tested with 50 patients. The 

best results are highlighted in bold, while the worst results are presented in italics. 
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Table  4.54 Results obtained for each module using BSA 

No 

Module CR Module HAT Module HAW 

Lyr 
Neurons 

Error Lyr 
Neurons 

Error Lyr 
Neurons 

Error 
L1  L2 L1 L2 L1 L2 

1 2 15 2 1.9895E-03 1 11   2.6692E-04 1 1   1.2594E-05 

2 2 13 3 2.1560E-03 1 11   2.4896E-05 1 3   3.5618E-04 

3 2 13 2 2.6370E-03 2 2 25 2.7216E-04 1 2   1.2674E-05 

4 2 6 19 1.5795E-02 1 13   2.1723E-04 1 4   2.1344E-04 

5 2 14 3 2.9891E-03 1 6   9.7679E-04 1 2   1.4953E-05 

6 2 15 3 2.4868E-03 1 6   5.5475E-05 1 5   2.8574E-04 

7 2 14 4 3.0008E-03 1 7   1.8742E-04 2 5 29 5.9159E-05 

8 2 10 3 2.0662E-03 1 16   1.4719E-04 1 6   1.0244E-03 

9 2 15 3 3.3236E-03 1 6   9.5376E-04 1 12   1.6154E-04 

10 2 11 3 1.9151E-03 2 3 21 6.0404E-04 2 2 14 5.2981E-06 

11 2 13 3 2.6533E-03 2 7 30 1.2470E-04 2 1 29 7.7887E-05 

12 2 12 4 2.1487E-03 2 2 12 2.7296E-04 1 4   7.7950E-05 

13 2 15 3 3.0417E-03 1 6   8.9198E-05 1 8   2.2912E-05 

14 2 7 9 5.8475E-03 1 5   1.8147E-04 1 11   2.4948E-04 

15 2 14 4 3.4193E-03 1 11   1.1581E-06 1 4   1.3707E-05 

16 2 14 3 2.9070E-03 1 18   5.0817E-05 1 4   3.7762E-05 

17 2 12 4 3.4450E-03 1 9   6.9434E-05 1 3   1.2314E-04 

18 2 9 3 1.2373E-02 1 13   9.2995E-05 1 2   2.8704E-05 

19 2 13 4 2.5051E-03 1 15   3.4264E-04 1 26   4.2738E-04 

20 2 12 3 4.5717E-03 1 5   1.0276E-04 2 2 27 1.3104E-06 

21 2 8 9 7.0193E-03 1 11   5.0799E-04 1 3   5.1014E-06 

22 2 14 3 3.1124E-03 1 11   1.2354E-04 2 2 30 4.8564E-05 

23 2 19 3 3.7331E-03 2 8 29 4.9013E-05 2 1 9 2.5942E-05 

24 2 18 3 4.1533E-03 1 9   5.5214E-05 2 2 25 3.5750E-05 

25 2 12 2 2.3808E-03 1 6   1.1892E-04 1 1   1.9581E-05 

26 2 19 2 1.9537E-03 2 2 5 4.0356E-04 2 1 28 1.0944E-04 

27 2 10 5 2.1283E-03 1 14   3.2272E-04 1 1   1.5986E-05 

28 2 9 4 4.3478E-03 1 8   1.0511E-04 1 5   4.3936E-05 

29 2 15 3 2.3804E-03 1 8   6.1481E-05 1 8   2.2459E-05 

30 2 20 1 4.0480E-03 2 4 30 1.7215E-04 2 1 30 3.6029E-05 

 

 

The best architectures obtained by the BSA algorithm are summarized in Table 4.55. 

Similarly, in this experimentation 250 epochs were used and as a learning algorithm the 

Levenberg-Marquard was used, since it has been proven that it generates excellent results when 
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working with numerical data. In this case, for the first module, the best experiment was number 

10, generating an error of 1.9151E-03, in the second module the best experiment was 15 with an 

error of 1.1581E-06 and for the third module the best experiment was the 20 with an error obtained 

of 1.3104E-06. 

 
Table  4.55 Summary of the best architectures 

 Module CR Module HAT Module HAW 

Number of layers 2 1 2 

Number of 

neurons per layer 
11, 3 11 2,27 

 

Once the experimentation or obtaining the best architectures is carried out, the best training is 

taken to be tested by 15 patients from their database. The results obtained are compared with the 

results provided by the Framingham Heart Study calculator because it takes it as a basis because 

it is well known that it is a reliable source of comparison. Table 4.56 presents the information on 

the risk factors of the group of patients studied. 

 
Table  4.56 List of risk factors in a group of patients 

No. 
Risk Factors 

Age Sex BMI Syst Diab Smoke Treatment 

1 27 W 24.3 122 No No No 

2 28 W 23.36 120 No No No 

3 28 M 29.76 123 No No No 

4 25 W 24.4 114 No No No 

5 45 W 24.9 116 No No No 

6 31 M 35.26 95 No No No 

7 33 M 25.26 130 No No No 

8 32 W 29.98 123 No No No 

9 25 W 21.7 108 No No No 

10 30 W 30.3 123 No No No 

11 30 M 21.55 107 No No No 

12 32 W 24.49 112 No No No 

13 31 M 30.07 112 No No No 

14 29 M 21.5 99 No No No 

15 31 M 23.4 106 No No No 
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The results obtained by the optimized modular neural network are presented in Table 4.57. 

The results generated by the Framingham Heart Study are available for comparison. In the same 

way, there are the results obtained from testing the best architectures provided by both algorithms, 

where it can be analyzed that the results obtained by the FPA algorithm are better than those 

obtained by the BSA algorithm where it is observed that more errors are generated. 

 

 
Table  4.57 Results obtained for the best architectures 

No. 

FHS FPA BSA 

Risk % 

Heart 

age Risk % 

Heart 

age ABS Risk % 

Heart 

age ABS 

1 0.8 27 0.8 27 0 0.8 27 0 

2 0.8 28 0.8 28 0 0.8 28 0 

3 1.7 28 1.7 28 0 1.8 28 0.1 

4 0.5 25 0.5 25 0 0.5 25 0 

5 2.8 45 2.8 45 0 2.8 45 0 

6 1.7 31 1.7 31 0 1.7 31 0 

7 1.7 33 1.7 33 0 1.6 33 0.1 

8 1.4 32 1.4 32 0 1.4 32 0 

9 0.4 25 0.4 25 0 0.4 25 0 

10 1.2 30 1.2 30 0 1.2 30 0 

11 1.3 30 1.3 30 0 1.3 30 0 

12 1 32 1 32 0 1 32 0 

13 2 31 2 31 0 2.1 31 0.1 

14 1 29 1 29 0 1.1 29 0.1 

15 1.5 31 1.5 31 0 1.5 31 0 

 

 

Table 4.58 presents a comparison of the percentage of success obtained when testing the 15 

patients from their database using the architectures optimized for each algorithm. With the 

information obtained, a comparison is made of the results generated with the optimized and non-

optimized modular neural networks, where a significant improvement is observed when 

optimizing. And it can also determine that the architectures generated by the FPA algorithm 

provide a more accurate result than the results contained by the architecture generated by the BSA 

algorithm. 
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Table  4.58 Percent of success 

Non-optimized MNN 
Optimized MNN 

FPA BSA 

85% 100% 96% 

 

 

 

4.6 Fuzzy Bird Swarm Algorithm  

 

In this last case study, a dynamic parameters adjustment is carried out to the BSA algorithm 

to improve its performance, because in different experiments it was the algorithm that did not 

provide the desired results, and for this, 3 study cases are carried out. The proposed method and 

the experiments carried out are described below. 

 

4.6.1 Proposed method for the dynamic parameters adjustment 

 

A fuzzy dynamic parameters adjustment is provided to the BSA algorithm, which will be 

given the name Fuzzy Bird Swarm Algorithm because when compared this algorithm with the 

FPA algorithm, it did not provide good results in some study cases. Derived from doing different 

experiments with the algorithm parameters, it is determined to use c1 and c2 to adjust, because a 

significant change is observed when these parameters vary, which correspond to the cognitive and 

social acceleration coefficient respectively. The proposed method with the dynamic adjustment of 

parameters is presented in Fig 4.41. 
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Fig. 4.41 Proposed method for the dynamic parameters adjustment 

Three Mamdani-type fuzzy systems are designed with trapezoidal membership functions to 

perform the proposed method, in which the variation that is made is in the rules. The scheme of 

the fuzzy system is presented in Fig 4.42. 

 

Fig. 4.42 Fuzzy system for the dynamic parameter adjustment 
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The input corresponds to the iterations, for this, the percentage of the current iteration with 

the total iterations is calculated, to better understand this point, when the algorithm starts to execute 

the iterations take a low value and as increase, this takes a higher value. This behavior is presented 

in Equation 4.3 and implemented initially by [79]. 

 

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑚𝑏𝑒𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 (4.3) 

 

The iteration input is granulated in 3, using the linguistic variables "Low", "Medium" and 

"High". The image of the input variable is presented in Fig. 4.43. 

 

 

Fig. 4.43 Input variable Iteration 

 

Regarding the outputs, which correspond to the parameters c1 and c2 are grained in 3, using 

both the linguistic variables "Low", "Medium" and "High". In Fig 4.44 and Fig 4.45 the outputs 

of the proposed fuzzy system are presented. 
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Fig. 4.44 Output variable c1 

 

 

Fig. 4.45 Output variable c2 

 

In Fig 4.46 the rules used in the first fuzzy system are presented, the value of the parameters 

to be adjusted are made in increments. 
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The rules used in the second fuzzy system, where c1 is increasing and c2 is decreasing and 

this are presented in Fig 4.47. 

 

 

 

 

 

 

In Fig. 4.48 the rules used by the fuzzy system are presented where c1 is decreasing and c2 

is increasing. 

 

 

 

    

 

Similarly, a Mamdani-type fuzzy system is designed with Gaussian membership functions, 

where the same parameters are used as the one designed with trapezoidal membership functions, 

this to compare and analyze with which the performance of the algorithm is improved. The fuzzy 

input is presented in Fig 4.49 while the outputs are presented in Fig 4.50 and Fig 4.51. 

 

    1. If iteration is Low then c1 is Low and c2 is Low   

    2. If iteration is Medium then c1 is Medium and c2 is Medium  

    3. If iteration is High then c1 is High and c2 is High 

    1. If iteration is Low then c1 is Low and c2 is High  

    2. If iteration is Medium then c1 is Medium and c2 is Medium 

    3. If iteration is High then c1 is High and c2 is Low  

    1. If iteration is Low then c1 is High and c2 is Low 

    2. If iteration is Medium then c1 is Medium and c2 is Medium  

    3. If iteration is High then c1 is Low and c2 is High 

  

Fig. 4.46 Rules of fuzzy system 1 

Fig. 4.47 Rules of fuzzy system 2 

Fig. 4.48 Rules of fuzzy system 3 
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Fig. 4.49 Input variable iteration with Gaussian MFs 

 

 

Fig. 4.50 Output variable c1 with Gaussian MFS 
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Fig. 4.51 Output variable c2 with Gaussian MFs 

 

 

4.6.2 Experiments and results 

 

Experiments are carried out with 3 case studies to observe with which fuzzy system the best 

result is obtained. For the first study, experiments are carried out with 10 mathematical functions, 

of which 7 are unimodal and 3 are multimodal. Table 4.59 presents the parameters used to carry 

out the corresponding experimentation, in which the first row corresponds to the BSA algorithm 

and the second row to the proposed method, these parameters of BSA were described in section 

4.2 

 
Table  4.59 Parameters used with BSA and FBSA 

 M pop dim FQ c1 c2 a1 a2 

BSA 1000 30 20 3 1.5 1.5 1 1 

FBSA 1000 30 20 3 Dynamic Dynamc 1 1 

 

Table 4.60 presents the set of mathematical functions used in this first experiment. Column 1 

describes the type of function, column 3 can consult the mathematical function. The ranges and 
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minimum values of these functions are presented in columns 4 and 5 respectively, where it is 

observed that in all cases the minimum is 0. 

 
Table  4.60 Mathematical Benchmark problems 

 No Function Range fmin 

Unimodal 

Benchmark functions 

1 𝑓1(𝑥) = ∑𝑥𝑖
2

𝑛

1=1

 
[-100,100] 

0 

2 𝑓2(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

+∏ |𝑥𝑖|
𝑛

𝑖=1
 

[-10,10] 
0 

3 𝑓3(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗−1

)

2
𝑛

𝑖=1

 
[-100,100] 

0 

4 𝑓4(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, , 1 ≤ 𝑖 ≤ 𝑛} 
[-100,100] 

0 

5 𝑓5(𝑥) = ∑ [100 (𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]
𝑛−1

𝑖=1
 [-30,30] 0 

6 𝑓6(𝑥) = ∑ ([𝑥𝑖 + 0.5])
2

𝑛

𝑖=1
 [-100,100] 0 

7 𝑓7(𝑥) =∑ 𝑖
𝑛

𝑖=1
𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1] [-1.28, 1.28] 0 

Multimodal 

benchmark functions 

8 𝑓9(𝑥) =∑ [𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 [-5.12,5.12] 0 

9 

𝑓10(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
)

− 𝑒𝑥𝑝 (
1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1
)

+ 20 + 𝑒 

[-32,32] 0 

10 𝑓11(𝑥) =
1

400
∑ 𝑥𝑖

2
𝑛

𝑖=1
−∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1
 [-600,600] 0 

 

In the second case study, experiments are carried out with 10 functions corresponding to 

CEC2017, for this, 100 independent runs were carried out for each function, in addition to 

performing 10 experiments per function. The parameters used are presented in Table 4.61. 



Chapter 4. Study cases 

- 108 - 

 

 
Table  4.61 Parameters used in second case of study 

 M pop dim FQ c1 c2 a1 a2 

BSA 1500 30 30 3 1.5 1.5 1 1 

FBSA 1500 30 30 3 Dynamic Dynamc 1 1 

  

In Table 4.62. The different mathematical functions used for experimentation are presented, 

for this, column 1 contains the type of function with which are working, the second column 

corresponds to the number of the function, column 3 contains the names of the functions used, and 

finally, column 4 contains Fi, which corresponds to the minimum value of each function. It is 

worth mentioning that the ranges of these functions go from -100 to 100. 

 
Table  4.62 CEC2017 functions 

 No Function Fi 

Unimodal 

Benchmark functions 

5 Shifted and Rotated Rastrigin’s Function 500 

6 
Shifted and Rotated Expanded Scaffer’s F6 

Function 
600 

7 
Shifted and Rotated Lunacek Bi Rastrigin 

Function 
700 

8 
Shifted and Rotated Non-Continuous Rastrigin’s 

Function 
800 

9 Shifted and Rotated Levy Function 900 

10 Shifted and Rotated Schwefel’s Function 1000 

Hybrid benchmark 

functions 
11 Hybrid Function 1 (N = 3) 1100 

Multimodal 

benchmark functions 

21 Composition Function 1 (N = 3) 2100 

22 Composition Function 2 (N = 3) 2200 

23 Composition Function 3 (N = 4) 2300 

[-100, 100] 
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Fig. 4.52 Neural Network Optimization 

 

For the third case study, the proposed method is applied to the optimization of an artificial 

neural network, which provides the diagnosis of the risk of developing hypertension in a time and 

from which the number of layers and the number of neurons in each layer. This artificial neural 

network is based on a neuro-fuzzy hybrid model [71], [80],  which provides different results to 

provide a final medical diagnosis. From the database generated and which was already explained 

in Chapter 3, information is taken from the patients, such as gender, body mass index, age, systolic 

and diastolic blood pressure, if the patient has hypertensive parents and if the patient is a smoker, 

these will serve as an entrance to said artificial neural network. Once having this, the FBSA 

algorithm looks for the parameters where the network generates the least error at the time of 

providing the results, this means, with which combination of parameters the network best learns 

the behavior of the information. Having previous experience in the optimization of different neural 

networks for diagnosis and trend, it is limited to 2 hidden layers and 30 neurons for each neuron, 

because it has been proven that by increasing the number of these parameters the neural network 
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is overtrained providing unwanted results. The representation of the optimization of the artificial 

neural network is presented in Fig 4.52. As in previous optimizations, the MSE is used as the 

objective function. 

      

4.6.3 Results 

 

The average of the results corresponding to the first case study is presented in Table 4.63. The 

information is organized as follows: Column 1 determines the number of the function used for the 

experimentation, the second column corresponds to the results obtained by the original method, 

columns 3 to 8 presents the results obtained by the different fuzzy systems proposed. Analyzing 

the information obtained, it can be observed that, if there is an improvement with respect to the 

original algorithm, but we still cannot determine with which of the fuzzy systems a better result is 

obtained since these are very similar. 

 
Table  4.63 Results of the first case study 

No BSA 

FBSA1 FBSA2 FBSA3 

Triang Gauss Triang Gauss Triang Gauss 

1 0 0 0 0 0 0 0 

2 7.9E-212 8.8E-236 2.7E-241 5.2E-245 4.2E-247 2E-244 6E-246 

3 0 0 0 0 0 0 0 

4 1.4E-212 8.8E-237 3.4E-240 4.5E-243 1.1E-242 8.5E-245 1.7E-246 

5 18.93802 8.616109 7.920785 7.26079 7.960495 7.544581 7.799847 

6 3.457556 0.057171 0.041854 0.033016 0.025625 0.022677 0.021388 

7 7.74E-05 7.38E-05 7.6E-05 7.6E-05 7.3E-05 7.68E-05 7.52E-05 

9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 
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Table 4.64 presents the averages of the results obtained in the experimentation of the second 

case study. In this, a significant improvement is also observed with respect to the results provided 

by the original method, and in the case of the FBSA, it is already clearly observed that the 

adjustment made with the fuzzy system 3 provides better results. If only the results provided with 

the fuzzy system 3 are observed, it can be analyzed that with the fuzzy system with trapezoidal 

membership functions, good results are obtained in 5 mathematical functions, while with the fuzzy 

system that is designed with Gaussian membership functions, it provides better results. results in 

3 mathematical functions. 

 

 
Table  4.64 Results of the second case study 

No BSA 

FBSA1 FBSA2 FBSA3 

Triang Gauss Triang Gauss Triang Gauss 

5 8.396E+02 7.288E+02 7.401E+02 7.288E+02 7.285E+02 7.160E+02 7.137E+02 

6 6.732E+02 6.862E+02 6.486E+02 6.438E+02 6.437E+02 6.406E+02 6.415E+02 

7 1.355E+03 1.067E+03 1.097E+03 1.067E+03 1.063E+03 1.045E+03 1.049E+03 

8 1.075E+03 9.935E+02 1.000E+03 9.935E+02 9.933E+02 9.917E+02 9.857E+02 

9 7.602E+03 3.432E+03 4.091E+03 3.432E+03 3.445E+03 3.296E+03 3.337E+03 

10 7.243E+03 7.138E+03 7.082E+03 7.138E+03 7.151E+03 7.190E+03 7.168E+03 

11 5.349E+03 1.632E+03 1.767E+03 1.632E+03 1.639E+03 1.625E+03 1.610E+03 

21 2.645E+03 2.503E+03 2.520E+03 2.503E+03 2.504E+03 2.492E+03 2.500E+03 

22 8.184E+03 3.691E+03 3.804E+03 3.691E+03 3.670E+03 3.831E+03 3.716E+03 

23 3.352E+03 2.997E+03 3.040E+03 2.997E+03 2.988E+03 2.961E+03 2.991E+03 

 

For the last case study, 30 experiments are carried out, varying in each one of them the 

parameters of the algorithm, which are presented in Table 4.65 and which correspond to the 

original method. 
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Table  4.65 Parameters used for BSA in the third case of study 

No M pop FQ c1 c2 a1 a2 D 

1 400 10 11 0.5 0.5 2 2 3 

2 333 12 5 0.8 0.8 1.5 1.5 3 

3 285 14 14 1.2 1.2 0.4 0.4 3 

4 250 16 11 1.5 1.5 0.1 0.1 3 

5 222 18 6 1.8 1.8 0.8 0.8 3 

6 200 20 4 2 2 1 1 3 

7 181 22 14 2.33 2.33 1.3 1.3 3 

8 166 24 15 2.48 2.48 0.6 0.6 3 

9 153 26 6 2.76 2.76 0.9 0.9 3 

10 142 28 4 3 3 1.1 1.1 3 

11 133 30 9 3.18 3.18 1.9 1.9 3 

12 125 32 14 3.22 3.22 0.5 0.5 3 

13 117 34 4 3.45 3.45 1.5 1.5 3 

14 111 36 10 3.56 3.56 0.7 0.7 3 

15 105 38 7 4 4 1.3 1.3 3 

16 100 40 10 0.4 0.4 1.8 1.8 3 

17 95 42 3 0.7 0.7 0.3 0.3 3 

18 90 44 11 1.15 1.15 0.9 0.9 3 

19 86 46 7 1.34 1.34 1 1 3 

20 83 48 3 1.45 1.45 2 2 3 

21 80 50 5 1.67 1.67 0.6 0.6 3 

22 76 52 7 1.78 1.78 0.3 0.3 3 

23 74 54 4 1.92 1.92 1.5 1.5 3 

24 71 56 5 2.18 2.18 1.2 1.2 3 

25 68 58 8 2.39 2.39 1.8 1.8 3 

26 66 60 14 2.56 2.56 0.7 0.7 3 

27 64 62 4 2.83 2.83 0.9 0.9 3 

28 62 64 8 3.4 3.4 1.5 1.5 3 

29 58 68 11 3.7 3.7 1.7 1.7 3 

30 57 70 7 4 4 2 2 3 

 

 

The parameters used in the FBSA algorithm are presented in Table 4.66 where it is observed 

that c1 and c2 are dynamic. 
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Table  4.66 Parameter used by FBSA in the three-case study 

No M pop FQ c1 c2 a1 a2 D 

1 93 10 11 Dynamic Dynamic 2 2 3 

2 78 12 5 Dynamic Dynamic 1.5 1.5 3 

3 66 14 14 Dynamic Dynamic 0.4 0.4 3 

4 58 16 11 Dynamic Dynamic 0.1 0.1 3 

5 52 18 6 Dynamic Dynamic 0.8 0.8 3 

6 47 20 4 Dynamic Dynamic 1 1 3 

7 42 22 14 Dynamic Dynamic 1.3 1.3 3 

8 39 24 15 Dynamic Dynamic 0.6 0.6 3 

9 36 26 6 Dynamic Dynamic 0.9 0.9 3 

10 33 28 4 Dynamic Dynamic 1.1 1.1 3 

11 31 30 9 Dynamic Dynamic 1.9 1.9 3 

12 29 32 14 Dynamic Dynamic 0.5 0.5 3 

13 27 34 4 Dynamic Dynamic 1.5 1.5 3 

14 26 36 10 Dynamic Dynamic 0.7 0.7 3 

15 24 38 7 Dynamic Dynamic 1.3 1.3 3 

16 23 40 10 Dynamic Dynamic 1.8 1.8 3 

17 22 42 3 Dynamic Dynamic 0.3 0.3 3 

18 21 44 11 Dynamic Dynamic 0.9 0.9 3 

19 20 46 7 Dynamic Dynamic 1 1 3 

20 19 48 3 Dynamic Dynamic 2 2 3 

21 19 50 5 Dynamic Dynamic 0.6 0.6 3 

22 18 52 7 Dynamic Dynamic 0.3 0.3 3 

23 17 54 4 Dynamic Dynamic 1.5 1.5 3 

24 17 56 5 Dynamic Dynamic 1.2 1.2 3 

25 16 58 8 Dynamic Dynamic 1.8 1.8 3 

26 16 60 14 Dynamic Dynamic 0.7 0.7 3 

27 15 62 4 Dynamic Dynamic 0.9 0.9 3 

28 15 64 8 Dynamic Dynamic 1.5 1.5 3 

29 14 66 11 Dynamic Dynamic 1.7 1.7 3 

30 14 68 7 Dynamic Dynamic 2 2 3 

 

 

The errors resulting from each experiment are presented in Table 4.67, where, when analyzing 

the results, it can determine that the smallest error is provided by the FBSA, and in the same way, 

as with the set of functions of the CEC2017, the best result is obtained with fuzzy 3 with 

trapezoidal membership functions. 
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Table  4.67 Errors obtained in the optimization of neural network 

Exp BSA 
FBSA1 FBSA2 FBSA3 

Tap Gauss Trap Gauss Trap Gauss 

1 5.7900E-04 2.3640E-04 1.1994E-04 1.2774E-04 2.1868E-04 1.1097E-04 1.1603E-04 

2 2.1700E-01 1.5152E-04 1.4671E-04 9.7513E-05 5.9168E-04 2.9474E-04 1.1203E-04 

3 6.9200E-04 3.6554E-04 1.6271E-04 1.0628E-04 1.6373E-04 1.3355E-04 1.1637E-04 

4 6.6800E-04 1.8996E-04 1.3298E-04 1.8295E-04 2.0475E-04 4.1062E-04 1.4204E-04 

5 5.8100E-04 2.0056E-04 1.0542E-04 1.1237E-04 4.5377E-04 1.3328E-04 1.1362E-04 

6 1.2100E-03 6.0916E-04 2.0166E-04 1.5014E-04 2.7373E-04 1.7478E-04 1.8582E-04 

7 5.2700E-04 2.0586E-04 1.2743E-04 1.6825E-04 1.2336E-04 1.6152E-04 1.6128E-04 

8 7.4400E-04 1.4262E-04 2.2285E-04 1.6526E-04 1.3185E-04 1.3763E-04 1.5623E-04 

9 7.9600E-04 2.7321E-04 1.1584E-04 1.7291E-04 1.5438E-04 1.1038E-04 1.5243E-04 

10 7.0300E-04 1.2285E-04 1.9806E-04 1.7173E-04 1.3342E-04 7.5037E-05 1.1322E-04 

11 5.1700E-04 1.8118E-04 1.3675E-04 1.6738E-04 1.7483E-04 7.7470E-04 1.1203E-04 

12 5.8200E-04 5.8996E-04 8.4936E-05 1.7818E-04 1.1907E-04 1.1098E-04 1.5724E-04 

13 9.1100E-04 1.4007E-04 1.2367E-04 3.0270E-04 1.9567E-04 1.2425E-04 2.6117E-04 

14 8.4000E-04 1.2649E-04 2.1311E-04 1.3062E-04 1.5719E-04 7.4491E-05 2.0479E-04 

15 4.6100E-04 1.2904E-04 1.3982E-04 1.3896E-04 2.2734E-04 1.7992E-04 1.1300E-04 

16 4.3400E-04 2.7673E-04 1.7857E-04 1.6118E-04 1.7180E-04 1.6894E-04 1.4219E-04 

17 6.1900E-04 2.2692E-04 1.4242E-04 1.3873E-04 1.1648E-04 2.3428E-04 1.5647E-04 

18 7.1300E-04 1.3800E-04 1.5711E-04 2.2345E-04 1.6546E-04 1.0498E-04 1.7784E-04 

19 3.3800E-04 1.2584E-04 1.6403E-04 1.7263E-04 1.8858E-04 1.8562E-04 2.1170E-04 

20 8.7200E-04 3.3963E-04 1.4398E-04 1.8697E-04 2.2736E-04 1.7733E-04 1.4367E-04 

21 1.1200E-02 1.5953E-04 1.6386E-04 2.6993E-04 1.8575E-04 9.8745E-04 1.7532E-04 

22 5.8600E-04 1.1478E-04 2.5263E-04 1.0480E-04 1.5168E-04 1.6172E-04 2.0189E-04 

23 5.9200E-04 1.2788E-04 1.2530E-04 1.1244E-04 1.1014E-04 1.3037E-04 1.1726E-04 

24 7.0400E-04 1.6354E-04 1.9270E-04 2.4045E-04 4.1225E-04 1.4246E-04 2.6490E-04 

25 6.5700E-03 2.1305E-04 1.2973E-04 1.5502E-04 1.5748E-04 1.5556E-04 1.4902E-04 

26 5.6200E-04 1.8905E-04 1.5780E-04 2.0893E-04 1.2280E-04 1.0250E-04 1.6072E-04 

27 6.5300E-04 1.4522E-04 1.7640E-04 1.8523E-04 1.4011E-04 9.6802E-05 2.2420E-04 

28 7.6300E-04 1.7327E-04 7.0441E-05 1.5279E-04 2.3381E-04 1.4626E-04 1.3111E-04 

29 7.4500E-04 1.2422E-04 2.0196E-04 1.7152E-04 1.5606E-04 1.5658E-04 1.5658E-04 

30 7.2300E-04 3.0350E-04 1.7573E-04 1.4433E-04 2.7212E-04 2.0311E-04 2.0311E-04 

 

Table 4.68 presents the averages of the errors obtained in the experimentation, and where it is 

observed that the best average of the error derived from the 30 experiments is provided by the 

fuzzy system 1 with Gaussian membership functions. 
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Table  4.68 Average of the neural network optimization 

BSA 
FBSA1 FBSA2 FBSA3 

Trap Gauss Trap Gauss Trap Gauss 

8.43E-03 2.16E-04 1.55E-04 1.67E-04 2.05E-04 2.05E-04 1.61E-04 

 

The best neural network architecture obtained is presented in Table 4.69: 

 
Table  4.69 Best Neural Network architecture 

 MNN  

Number of layers 2 

Number of 

neurons per layer 
8,6 

 

4.6.4 Statistical test  

 

To prove that the results obtained by the FBSA are better than the BSA, a parametric statistical 

test is performed which corresponds to the Z test, which is represented mathematically in Equation 

4.2 

For the experiments carried out with the functions of the CEC2017, the null hypothesis 

determines that the results obtained by the FBSA algorithm are greater than or equal to the results 

obtained with the BSA. As an alternative hypothesis, the results obtained by the FBSA are better 

than the results provided by the BSA. The statistical parameters of the second case study are 

presented in Table 4.70. 

 

 
Table  4.70 Statistical Parameters for FBSA vs BSA 

Z test parameters FBSA vs BSA 

Critical Value (Zc)  -1.64 

Significance Level (α) 0.05 

H0 µ1 ≥ µ2 

Ha (Claim) µ1 < µ2  

Level of significance  95% 
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The results obtained derived from applying the Z test are presented in Table 4.71, where the 

first column determines the lists the functions used, in column 2 and 3 the average and standard 

deviation of the experiments carried out with the BSA are presented, in Columns 4 and 5 presents 

the averages and standard deviations of the experiments carried out by the FBSA, taking into 

account that it took the fuzzy system number 3 to perform this statistic. In column 5 the Z values 

are presented and finally, in column 6 the evidence of the obtained z values is determined, where 

“S” corresponds to the fact that significant evidence was obtained, while “NS” corresponds to that 

there was no significant evidence when performing the statistical test. Analyzing the information, 

it can observe that in 9 of the 10 functions it finds significant evidence, so it can conclude that the 

results obtained by the FBSA algorithm are better than those obtained by the BSA. 

 

 
Table  4.71 Results of statistical test for CEC2017 functions 

No 
Original FBSA 

Z value Evidence 
Average S.D Average S.D 

5 839.55 4.30 712.74 7.44 -80.83 S 

6 673.23 1.19 641.39 1.26 -100.75 S 

7 1354.97 8.70 1044.43 8.41 -140.57 S 

8 1075.02 6.52 986.26 3.16 -67.10 S 

9 7601.72 217.87 3300.65 105.02 -97.40 S 

10 7242.97 78.28 7240.19 119.18 -0.11 NS 

11 5348.57 335.48 1702.34 250.48 -47.70 S 

21 2644.52 8.46 2486.35 4.51 -90.37 S 

22 8183.92 96.92 3922.18 261.25 -83.77 S 

23 3352.21 13.05 2980.71 13.70 -107.54 S 

 

 

In the case of experimentation with the artificial neural network, it is established as a null 

hypothesis that the errors obtained by the FBSA algorithm are greater than the results obtained 

with the BSA algorithm. And as an alternative hypothesis, we have that the errors obtained by the 

FBSA are less than the errors contained by the BSA. The comparison of the average obtained from 

both experiments is presented in Table 4.72, in which it can be noted that the errors of the FBSA 

are less than the errors generated by the FBSA. 
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Table  4.72 Comparison results between methods 

MSE FBSA BSA 

Average 1.55E-04 8.43E-03 

Standard Deviation 4.10E-05  3.95E-03  

Experiments 30 30 

 

 

The statistical parameters for this test are presented in Table 4.73. 
 

 
Table  4.73 Statistical Parameters for FBSA vs BSA 

Z test parameters FBSA vs BSA 

Test Statistic Value - 11.472 

Critical Value (Zc)  -1.64 

Significance Level (α) 0.05 

H0 µ1 ≥ µ2 

Ha (Claim) µ1 < µ2  

Experiments 30 

 

 

Since a Z value of -11.472 is obtained and it is less than the critical value Zc = -1.64, the null 

hypothesis is rejected and the alternative hypothesis is accepted, with which it is concluded that 

there is sufficient evidence with 5% level of significance to support the claim that the errors held 

by the FBSA are better than the errors obtained by the BSA. The probabilistic distribution of this 

case study is illustrated in Fig 4.53. 

 

 

Fig. 4.53 Plot of the Normal Distribution 

=-10.367 
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Chapter 5. Conclusions 
 

 

For this research, a hybrid neuro-fuzzy model is proposed to provide a diagnosis based on 

blood pressure. Soft computing has proven to be an excellent tool to solve these types of problems, 

the deep learning carried out by artificial neural networks and the decisions made by fuzzy systems 

have been efficient when providing the diagnosis of a disease, such as COVID-19, Parkinson, 

diabetes, cancer, dengue, etc. 

The proposed model can be identified in several parts in which are using artificial neural 

networks and fuzzy inference systems, which determine different conditions that a patient may 

have, determined by their blood pressure to result in a final medical diagnosis, and where each of 

these modules were optimized to provide an accurate diagnosis. 

The first optimized soft computing techniques were fuzzy systems, which provide us with 

information about the patient's heart rate level and the nocturnal blood pressure profile. These 

fuzzy systems were implemented in Type-1 and ITFS. Likewise, these were optimized by bio-

inspired algorithms, where it is concluded that there was an improvement in the results obtained 

with the optimized fuzzy ones, achieving a 100% success rate with a specific group of patients. 

Subsequently, the optimization of the different artificial neural networks implemented is 

carried out. First, the modular neural network is optimized to obtain the blood pressure trend, 

where in the same way it is optimized with two bio-inspired algorithms to observe its performance, 

where the results also improve significantly compared to the non-optimized modular neural 

network. This being the same case for the monolithic neural network with which the risk of 

developing hypertension is obtained in 4 years. 

In another part of the model, an artificial neural network is implemented to determine the risk 

of a cardiovascular event in 10 years, with which different tests were carried out and it is 

determined that the artificial neural network learns better by dividing the information, this means 

to implement it in a modular way so that learning was better, in addition to being each module 

optimized and where results were improved. 

From the algorithms implemented, it can be concluded that those with which the best results 

were obtained in the different optimizations carried out were the Flower Pollination Algorithm and 

the Bird Swarm Algorithm, which is why they were used throughout the investigation. 
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Finally, and derived from the fact that on different occasions the FPA algorithm provided 

better results, an improvement is made in the BSA algorithm implemented dynamic adjustment of 

parameters with fuzzy systems where tests are performed with different mathematical functions 

and in the optimization of an artificial neural network, determining that the results obtained and 

the statistics implemented significantly improve the results is obtained. 

In summary, the soft computing technique implemented in the medical area has been 

extremely important and efficient in helping expert doctors make decisions to provide an accurate 

and timely diagnosis, in this case of hypertension and cardiovascular risk.  

As future work, the database of patients can be expanded to have more different behaviors 

from blood pressure, also, at the time of giving the diagnosis, different recommendations given by 

the medical expert could be included, the designed fuzzy system can be tested with the General 

Type-2 fuzzy systems and finally, it would be to implement in hardware, some portable device so 

that cardiologists can transport it easily. 

Regarding the dynamic adjustment of parameters to the BSA algorithm, diversity can be 

included as input of the fuzzy system to observe if the results improve, in addition to testing with 

the IT2FS to compare results. 
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Appendix 
 

 

In this section, it is presented as an appendix, different code used for the optimization of both 

neural networks and fuzzy systems, it will also be possible to consult the representation of 

knowledge of Type-1 and Interval Type-2 fuzzy systems for heart rate classifiers of the nocturnal 

blood pressure profile, besides it can also find a brief description of the operation of the graphical 

user interface. 

 

Appendix A. Code referring to optimizations 

 

This section can consult the optimization codes of artificial neural networks and fuzzy systems, 

as well as the dynamic adjustment of parameters made to the BSA algorithm. 

 

Optimization of the fuzzy system corresponding to heart rate classification using the FPA 

algorithm 

 

function [best,fmin,N_iter]=fpa(para) 

 

for k=1:30 

  

n=[20 23 28 32 35 37 44 48 50 56 59 62 65 70 72 78 80 85 88 96 99 120 150 ... 

   180 200 210 220 230 240 250];           % Population size, typically 10 to 25 

p=[0.5 0.3 0.7 0.9 0.2 0.8 0.1 0.4 0.6 0.7 0.4 0.5 0.3 0.2 0.4 0.6 0.2 0.1... 

    0.9 0.7 0.4 0.5 0.3 0.7 0.2 0.6 0.1 0.8 0.9 0.5];           % probabibility switch 

  

n=n(k); 

p=p(k); 

% Iteration parameters 

N_iter=[1000 870 714 625 571 574 454 416 400 357 338 322 307 285 278 256 ... 

        250 235 227 208 202 166 133 111 100 95 90 87 83 80];  

  

 

N_iter=N_iter(k); 

  

ages=xlsread('pacientes.xls',1,'A1:A31');  

pulse=xlsread('pacientes.xls',1,'B1:B31');  

r=length(ages); 



Appendix 

- 126 - 

 

errors=0; 

  

d=56; 

Lb=[0 0 5 10 ...   

    9 13 25 33 ...  

    30 39 52 60 ...  

    54 69 92 100 ...  

    0 0 11 30 ...  

    25 30 46 59 ...  

    57 62 86 98 ...  

    90 110 138 157 ...  

    140 180 212 220 ... 

    0 0 4 13 ...  

    10 13 20 26 ...  

    24 29 36 40 ...  

    39 46 60 69 ... 

    65 78 98 100]; ...  

 

Ub=[0 0 9 14 ...  

    9 19 32 36.65 ...  

    32.9 44 59 65 ...  

    57.5 86 100 100  ...  

    0 0 17 32.5 ...  

    27 35 54 62.8 ...  

    59.1 70 84 102 ...  

    93.5 117 144 164 ...   

    147 205 220 220 ... 

    0 0 7.5 15 ...  

    12.4 17 24.5 29.4 ...  

    26.7 32 40 44 ...  

    42 51 65 73.1 ... 

    69 90 100 100]; ...  

     

% Initialize the population/solutions 

  fbase = readfis('pulsetrap01'); 

%Initialize the population/solutions 

for i=1:n 

  Sol(i,:)=Lb+(Ub-Lb).*rand(1,d); 

   

b=newfis('pulsetrap01'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

b.name='pulsetrap01'; 

b.type='mamdani'; 

b.andMethod='min'; 

b.orMethod='max'; 

b.impMethod='min'; 
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b.aggMethod='max'; 

b.defuzzMethod='centroid'; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% Declaration of  I/O variables 

  

  %Variable systolic          

    b = addvar(b,'input','Age',[0 100]); 

    %primer funcion de membresia 

    b = addmf(b,'input',1,'Child','trapmf',[Sol(i,1) Sol(i,2) Sol(i,3) Sol(i,4)]); 

    

    %segunda funcion de membresia 

    b = addmf(b,'input',1,'Young','trapmf',[Sol(i,5) Sol(i,6) Sol(i,7) Sol(i,8)]);    

                 

    %tercer funcion de membresia 

    b = addmf(b,'input',1,'Adult','trapmf',[Sol(i,9) Sol(i,10) Sol(i,11) Sol(i,12)]);        

             

     %cuarta funcion de membresia 

     b = addmf(b,'input',1,'Elder','trapmf',[Sol(i,13) Sol(i,14) Sol(i,15) Sol(i,16)]); 

             

        %Variable Diastolic 

        b = addvar(b,'input','Pulse',[0 220]);                             

        %primer funcion de membresia 

        b = addmf(b,'input',2,'VeryLow','trapmf',[Sol(i,17) Sol(i,18) Sol(i,19) Sol(i,20)]); 

  

        %segunda funcion de membresia 

        b = addmf(b,'input',2,'Low','trapmf',[Sol(i,21) Sol(i,22) Sol(i,23) Sol(i,24)]);    

                 

        %tercer funcion de membresia 

        b = addmf(b,'input',2,'Normal','trapmf',[Sol(i,25) Sol(i,26) Sol(i,27) Sol(i,28)]); 

  

         %cuarta funcion de membresia 

         b = addmf(b,'input',2,'High','trapmf',[Sol(i,29) Sol(i,30) Sol(i,31) Sol(i,32)]);  

             

         %quinta funcion de membresia 

         b = addmf(b,'input',2,'VeryHigh','trapmf',[Sol(i,33) Sol(i,34) Sol(i,35) Sol(i,36)]); 

          

   %%Salida perfil nocturno 

   b = addvar(b,'output','PLevel',[0 100]);           

   %primer funcion de membresia 

   b = addmf(b,'output',1,'Low','trapmf',[Sol(i,37) Sol(i,38) Sol(i,39) Sol(i,40)]); 

    

   %segunda funcion de membresia 

   b = addmf(b,'output',1,'BelowAV','trapmf',[Sol(i,41) Sol(i,42) Sol(i,43) Sol(i,44)]);  

                 

   %tercer funcion de membresia 

   b = addmf(b,'output',1,'Excellent','trapmf',[Sol(i,45) Sol(i,46) Sol(i,47) Sol(i,48)]); 
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   %cuarta funcion de membresia 

    b = addmf(b,'output',1,'AvobeAV','trapmf',[Sol(i,49) Sol(i,50) Sol(i,51) Sol(i,52)]);   

     

    b = addmf(b,'output',1,'Veryhigh','trapmf',[Sol(i,53) Sol(i,54) Sol(i,55) Sol(i,56)]);  

                      

 ruleList=[ 1 1 1 1 1; 

            1 2 1 1 1; 

            1 3 3 1 1; 

            1 4 3 1 1; 

            1 5 4 1 1; 

            2 1 1 1 1; 

            2 2 2 1 1; 

            2 3 3 1 1; 

            2 4 4 1 1; 

            2 5 5 1 1; 

            3 1 1 1 1; 

            3 2 2 1 1; 

            3 3 3 1 1; 

            3 4 4 1 1; 

            3 5 5 1 1; 

            4 1 1 1 1; 

            4 2 3 1 1; 

            4 3 3 1 1; 

            4 4 5 1 1; 

            4 5 5 1 1]; 

    b = addrule(b,ruleList); 

  

% Evaluate fuzzy systems 

   

         filename1 = [‘BestFPA0702-' num2str(k)]; 

          writefis(b,filename1); 

       

      end 

   end 

          

% Find the current best 

[fmin,I]=min(Fitness); 

best=Sol(I,:); 

S=Sol;  

%end 

  

for t=1:N_iter, 

        % Loop over all bats/solutions 

        for i=1:n, 

          % Pollens are carried by insects and thus can move in 

          % large scale, large distance. 
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          % This L should replace by Levy flights   

          % Formula: x_i^{t+1}=x_i^t+ L (x_i^t-gbest) 

          if rand>p, 

          %% L=rand; 

          L=Levy(d); 

          dS=L.*(Sol(i,:)-best); 

          S(i,:)=Sol(i,:)+dS; 

          % Check if the simple limits/bounds are OK 

          S(i,:)=simplebounds(S(i,:),Lb,Ub); 

           

          % If not, then local pollenation of neighbor flowers  

          else 

              epsilon=rand; 

              % Find random flowers in the neighbourhood 

              JK=randperm(n); 

              % As they are random, the first two entries also random 

              % If the flower are the same or similar species, then 

              % they can be pollenated, otherwise, no action. 

              % Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t) 

              S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:)); 

              % Check if the simple limits/bounds are OK 

              S(i,:)=simplebounds(S(i,:),Lb,Ub); 

          end 

        end 

         

        % Evaluate new solutions 

           Fnew=S(i,:); 

                    % If fitness improves (better solutions found), update then 

            if (Fnew<=Fitness(i)), 

                Sol(i,:)=S(i,:); 

                Fitness(i)=Fnew(i); 

           end 

            

          % Update the current global best 

          if Fnew<=fmin, 

                best=S(i,:)   ; 

                fmin=Fnew   ; 

          end 

  

        % Display results every 100 iterations 

        if round(t/100)==t/100, 

        best 

        fmin 

        end 

         

filename = [ 'fisfpa0702-' num2str(k) ]; 
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save(filename) 

end 

end 

  

clc; 

clear 

  

% Application of simple constraints 

function s=simplebounds(s,Lb,Ub) 

  % Apply the lower bound 

  ns_tmp=s; 

  I=ns_tmp<Lb; 

  ns_tmp(I)=Lb(I); 

   

  % Apply the upper bounds  

  J=ns_tmp>Ub; 

  ns_tmp(J)=Ub(J); 

  % Update this new move  

  s=ns_tmp; 

  

% Draw n Levy flight sample 

function L=Levy(d) 

% Levy exponent and coefficient 

% For details, see Chapter 11 of the following book: 

% Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014). 

beta=3/2; 

sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta); 

    u=randn(1,d)*sigma; 

    v=randn(1,d); 

    step=u./abs(v).^(1/beta); 

L=0.01*step;  
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Optimization of the artificial neural network to obtain the risk of developing arterial 

hypertension using the BSA algorithm 

 

for k1= 1 : 30 

%if nargin < 1 

    %FitFunc = @Sphere; 

 M =[93 78 66 58 52 47 42 39 36 33 31 29 27 26 24 23 22 21 20 19 19 18 17 17 16 16 15 15 14 

14];  

    pop = [10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 

66 68];  

    dim = 3;    

    %FQ = randi([1,15],1,1);   

    FQ = [11 5 14 11 6 4 14 15 6 4 9 14 4 10 7 10 3 11 7 3 5 7 4 5 8 14 4 8 11 7]; 

%     c1 = [0.5 0.8 1.2 1.5 1.8 2 2.33 2.48 2.76 3 3.18 3.22 3.45 3.56 4 0.4 0.7 ... 

%            1.15 1.34 1.45 1.67 1.78 1.92 2.18 2.39 2.56 2.83 3.4 3.7 4]; 

%     c2 = [0.5 0.8 1.2 1.5 1.8 2 2.33 2.48 2.76 3 3.18 3.22 3.45 3.56 4 0.4 0.7 ... 

    %       1.15 1.34 1.45 1.67 1.78 1.92 2.18 2.39 2.56 2.83 3.4 3.7 4]; 

    a1 = [2 1.5 0.4 0.1 0.8 1 1.3 0.6 0.9 1.1 1.9 0.5 1.5 0.7 1.3 1.8 0.3 0.9 1 2 ...  

          0.6 0.3 1.5 1.2 1.8 0.7 0.9 1.5 1.7 2]; 

    a2 = [2 1.5 0.4 0.1 0.8 1 1.3 0.6 0.9 1.1 1.9 0.5 1.5 0.7 1.3 1.8 0.3 0.9 1 2 ...  

          0.6 0.3 1.5 1.2 1.8 0.7 0.9 1.5 1.7 2]; 

%end 

  

M=M(k1); 

pop=pop(k1); 

% c1=c1(k1); 

% c2=c2(k1); 

a1=a1(k1); 

a2=a2(k1); 

FQ=FQ(k1); 

comienza=now; 

  

% set the parameters 

lb= [1 1 1];   % Lower bounds 

ub= [2 30 30];    % Upper bounds 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

tic; 

  

[ bestX, fMin, bestnn, bestnnall ] = BSA2( M, pop, dim, FQ, a1, a2, lb,ub ) 

  

tiempo = toc/60;  

tiempos = toc;  

arquitec(k1).nn = bestnn; 

arquitec(k1).best = fMin; 

arquitec(k1).capas = bestX; 
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arquitec(k1).tiempo = tiempo; 

arquitec(k1).M= M; 

arquitec(k1).pop = pop; 

arquitec(k1).FQ = FQ; 

% arquitec(k1).c1 = c1; 

% arquitec(k1).c2 = c2; 

arquitec(k1).a1= a1; 

arquitec(k1).a2 = a2; 

arquitec(k1).bestnnall = bestnnall; 

save('redesFBSA00405-4.mat','arquitec'); 

  

datestr(termina-comienza,'HH:MM:SS') '\n']); 

disp(['Total number of evaluations: ',num2str(M*pop)]); 

disp(['Best solution=',num2str(bestX),'   fmin=',num2str(fMin) '   BSA time:', datestr(termina-

comienza,'HH:MM:SS')]); 

  

%filename = [ 'nnBSA1409-' num2str(k1) ]; 

%save(filename) 

 

end 

function [ bestX, fMin, bred, arquitec ] = FBSA2( M, pop, dim, FQ, a1, a2,lb,ub ) 

% Display help 

%Initialization 

 

for i = 1 : pop 

    x( i, : ) = round(lb + (ub - lb) .* rand( 1, dim ));  

    [fit( i ),red]= FitFunc1p( x( i, : ) );  

    arqui(i).nn = red; 

%  fprintf(errord,['Error:' num2str(fit(i)) ' Iteracion:' int2str(i) ' Individuos:' int2str(pop) ' Capas: ' 

int2str(x(i,1)) ' Neuronas capa 1: ' int2str(x(i,2))  ' Neuronas Capa 2: ' int2str(x(i,3)) '\n']);  

end 

pFit = fit; % The individual's best fitness value 

pX = x;     % The individual's best position corresponding to the pFit 

 

[ fMin, bestIndex ] = min( fit );  % fMin denotes the global optimum 

% bestX denotes the position corresponding to fMin 

bestX  = x( bestIndex, : );    

% arqui(i).nn = red; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Start the iteration. 

%fprintf(errord,['\n----------------------------------------\n\n']); 

 

a=readfis('ajusteg.fis'); 
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for iteration = 1 : M 

      

     itrtn=iteration/M; 

      

     out=evalfis(a,itrtn); 

      

     c1=out(1); 

     c2=out(1); 

      

      

    prob = rand( pop, 1 ) .* 0.2 + 0.8;%The probability of foraging for food 

     

    if( mod( iteration, FQ ) ~= 0 )          

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Birds forage for food or keep vigilance 

        sumPfit = sum( pFit ); 

        meanP = mean( pX ); 

        for i = 1 : pop 

            if rand < prob(i) 

                x( i, : ) = round( x( i, : ) + c1 * rand.*(bestX - x( i, : ))+ ... 

                    c2 * rand.*( pX(i,:) - x( i, : ) )); 

            else 

                person = randiTabu( 1, pop, i, 1 ); 

                 

                x( i, : ) = round( x( i, : ) + rand.*(meanP - x( i, : )) * a1 * ... 

                    exp( -pFit(i)/( sumPfit + realmin) * pop ) + a2 * ... 

                    ( rand*2 - 1) .* ( pX(person,:) - x( i, : ) ) * exp( ... 

                    -(pFit(person) - pFit(i))/(abs( pFit(person)-pFit(i) )... 

                    + realmin) * pFit(person)/(sumPfit + realmin) * pop ));  

            end 

            

            x( i, : ) = Bounds( x( i, : ), lb, ub );   

            [fit( i ), red] = FitFunc1p( x( i, : ) ); 

               

        end 

         % 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        FL = rand( pop, 1 ) .* 0.4 + 0.5;    %The followed coefficient 

         

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Divide the bird swarm into two parts: producers and scroungers. 

        [ans, minIndex ] = min( pFit ); 

        [ans, maxIndex ] = max( pFit ); 
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        choose = 0; 

        if ( minIndex < 0.5*pop && maxIndex < 0.5*pop ) 

            choose = 1; 

        end 

        if ( minIndex > 0.5*pop && maxIndex < 0.5*pop ) 

            choose = 2; 

        end 

        if ( minIndex < 0.5*pop && maxIndex > 0.5*pop ) 

            choose = 3; 

        end 

        if ( minIndex > 0.5*pop && maxIndex > 0.5*pop ) 

            choose = 4; 

        end 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        if choose < 3 

            for i = (pop/2+1) : pop 

                i=round(i) 

                x( i, : ) = x( i, : ) * ( 1 + randn ); 

                x( i, : ) = Bounds( x( i, : ), lb, ub ); 

                x=round(x); 

                [fit( i ), red]= FitFunc1p( x( i, : ) ); 

            end 

            if choose == 1  

                x( minIndex,: ) = x( minIndex,: ) * ( 1 + randn ); 

                x( minIndex, : ) = Bounds( x( minIndex, : ), lb, ub ); 

                x=round(x); 

                [fit( minIndex ),red ]= FitFunc1p( x( minIndex, : ) ); 

            end 

            for i = 1 : 0.5*pop 

                if choose == 2 || minIndex ~= i 

                    person = randi( [(0.5*pop+1), pop ], 1 ); 

                    x( i, : ) = x( i, : ) + (pX(person, :) - x( i, : )) * FL( i ); 

                    x=round(x); 

                    [fit( i ), red ]= FitFunc1p( x( i, : ) ); 

                end 

            end 

        else 

            for i = 1 : 0.5*pop 

                x( i, : ) = x( i, : ) * ( 1 + randn ); 

                x( i, : ) = Bounds( x( i, : ), lb, ub ); 

                x=round(x); 

                [fit( i ), red ]= FitFunc1p( x( i, : ) ); 

            end 

            if choose == 4  

                x( minIndex,: ) = x( minIndex,: ) * ( 1 + randn ); 
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                x( minIndex, : ) = Bounds( x( minIndex, : ), lb, ub ); 

                x=round(x); 

                [fit( minIndex ), red ]= FitFunc1p( x( minIndex, : ) ); 

            end 

            for i = (0.5*pop+1) : pop 

                i=round(i) 

                if choose == 3 || minIndex ~= i 

                    person = randi( [1, 0.5*pop], 1 ); 

                    x( i, : ) = x( i, : ) + (pX(person, :) - x( i, : )) * FL( i ); 

                    x( i, : ) = Bounds( x( i, : ), lb, ub ); 

                    x=round(x); 

                    [fit( i ), red ]= FitFunc1p( x( i, : ) ); 

                end 

            end    

        end 

         

    end 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Update the individual's best fitness vlaue and the global best one 

    

    for i = 1 : pop  

        if ( fit( i ) < pFit( i ) ) 

            pFit( i ) = fit( i ); 

            pX( i, : ) = x( i, : ); 

        end 

         

        if( pFit( i ) < fMin ) 

            fMin = pFit( i ); 

            bestX = pX( i, : ); 

        end 

    end 

     

         [BSAFitness,index]=sort(pFit); 

           

          bred = arqui(index(1,1)).nn;  

    

    arquitec(iteration).nn = bred; 

    arquitec(iteration).best = fMin; 

    arquitec(iteration).capas = bestX; 

    arquitec(iteration).iteration = iteration; 

    save('redesFg0405-1.mat','arquitec')     

           

 end 

 

end 
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% End of the main program 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The following functions are associated with the main program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This function is the objective function 

% function y = Sphere( x ) 

% y = sum( x .^ 2 ); 

 

% Application of simple limits/bounds 

function s = Bounds( s, Lb, Ub) 

  % Apply the lower bound vector 

  temp = s; 

  I = temp < Lb; 

  temp(I) = Lb(I); 

   

  % Apply the upper bound vector  

  J = temp > Ub; 

  temp(J) = Ub(J); 

  % Update this new move  

  s = temp; 

end 

%-------------------------------------------------------------------------- 

% This function generate "dim" values, all of which are different from 

%  the value of "tabu" 

function value = randiTabu( min, max, tabu, dim ) 

value = ones( dim, 1 ) .* max .* 2; 

num = 1; 

while ( num <= dim ) 

    temp = randi( [min, max], 1, 1 ); 

    if( length( find( value ~= temp ) ) == dim && temp ~= tabu ) 

        value( num ) = temp; 

        num = num + 1; 

    end 

end 

end 
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Dynamic adjustment  of parameter to the BSA algorithm using diversity experimented with 

the CEC2017 functions 

 

clc 

clear all 

for s=1:10 

 func_num=23; 

 M =1500; 

 pop = 30; %se tienen que poner arriba de 10 individuos para que no marque error 

 dim = 30;    

 FQ = 3;   

 a1 =1; 

 a2 =1; 

%  c1=1.5; 

%  c2=1.5; 

lb=-100; 

ub=100; 

runs=100; 

fhd=str2func('cec17_func'); 

% for i=12:12 

%     func_num=i; 

 

tic; 

    for j=1:runs 

        j, 

        [ bestX, fMin, Convergence_curve, c1, c2] = BSA2Div( fhd, M, pop, dim, FQ, a1, a2, 

lb,ub,func_num ); %Que es FES c1, c2, 

%       [gbest,gbestval,PSOBSA_cg_curve]= BSA2(M,pop,FQ,c1,c2,a1,a2,lb,ub,dim,fobj); 

        %[gbestbsa,gbestvalbsa,BSA_cg_curve]= BSA3(fhd, 

M,pop,FQ,c1,c2,a1,a2,lb,ub,dim,func_num);   

         

        %xbest(j,:)=bestX; 

        fbsaxbest(s,j).bestX=bestX; 

        fbsafbest(s,j)=fMin; 

        fbsaconver=Convergence_curve; 

        c1(s,j) = c1; 

        c2(s,j) = c2; 

        fbsafbest(s,j) 

         

    tiempo = toc/60;  

    tiempos = toc;  

    tiempo = tiempo; 

 

    end 

    f_mean1(s)=mean(fbsafbest(1,:)); 
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    %f_mean1(s)=mean(bsabest(1,:)); 

    %filename1 = [ 'pruebafis2g/fun114g-' num2str(s) ]; 

     

    filename1 = [ 'Resultados\pruebadivfx23fis1t\fun23fbsadiv1-' num2str(s) ]; 

    xlswrite(filename1, fbsafbest(s,:)'); 

    filename2 = [ 'Resultados\pruebadivfx23fis1t\mat\fun23fbsadiv1' num2str(s) ]; 

    save(filename2) 

end 

  

 

function [ bestX, fMin, Convergence_curve, c1, c2 ] = mainBSA2comp(fhd, M, pop, dim, FQ, 

a1, a2,lb,ub,varargin  ) 

% Display help 

%Initialization 

rand('state',sum(100*clock)); 

% Diver=zeros(1,M); 

% me=M; 

% ps=pop; %poblacion 

% D=dim; 

 

for i = 1 : pop 

    x( i, : ) = lb + (ub - lb) .* rand( 1, dim ); %pop 

    %fit(i)=feval(fhd,x,varargin{:}); %fit es la e en PSO ;) 

%     fit( i ) = fhd(x( i, : ));  

    %fit( i ) = FitFunc( x( i, : ) );  

    fit( i ) = feval(fhd, x( i, : )',varargin{:} ); %Estaa 

end 

pFit = fit; % The individual's best fitness value 

pX = x;     % The individual's best position corresponding to the pFit 

 

[ fMin, bestIndex ] = min( fit );  % fMin denotes the global optimum 

% bestX denotes the position corresponding to fMin 

bestX = x( bestIndex, : );    

Convergence_curve=zeros(1,M); 

 

   a=readfis('ajuste4Div4.fis'); 

%    Diver(1)=Diversidad(x,bestIndex); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Start the iteration. 

 

 for iteration = 1 : M 

 

     %Difuso 

     itrtn=iteration/M; 

     if(iteration == 1) 

         Diver=Diversidad(x,bestIndex);          
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     end  

     out=evalfis(a,[itrtn;Diver]); 

     c1=out(1); 

     c2=out(2); 

      

 

    prob = rand( pop, 1 ) .* 0.2 + 0.8;%The probability of foraging for food 

     

    if( mod( iteration, FQ ) ~= 0 )          

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Birds forage for food or keep vigilance 

        sumPfit = sum( pFit ); 

        meanP = mean( pX ); 

        for i = 1 : pop 

            if rand < prob(i) 

                x( i, : ) = x( i, : ) + c1 * rand.*(bestX - x( i, : ))+ ... 

                    c2 * rand.*( pX(i,:) - x( i, : ) ); 

            else 

                person = randiTabu( 1, pop, i, 1 ); 

                 

                x( i, : ) = x( i, : ) + rand.*(meanP - x( i, : )) * a1 * ... 

                    exp( -pFit(i)/( sumPfit + realmin) * pop ) + a2 * ... 

                    ( rand*2 - 1) .* ( pX(person,:) - x( i, : ) ) * exp( ... 

                    -(pFit(person) - pFit(i))/(abs( pFit(person)-pFit(i) )... 

                    + realmin) * pFit(person)/(sumPfit + realmin) * pop );  

            end 

             

            x( i, : ) = Bounds( x( i, : ), lb, ub );   

            fit( i ) = feval(fhd, x( i, : )',varargin{:} ); 

        end 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

     

else 

        FL = rand( pop, 1 ) .* 0.4 + 0.5;    %The followed coefficient 

         

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        % Divide the bird swarm into two parts: producers and scroungers. 

        [~, minIndex ] = min( pFit ); 

        [~, maxIndex ] = max( pFit ); 

        choose = 0; 

        if ( minIndex < 0.5*pop && maxIndex < 0.5*pop ) 

            choose = 1; 

        end 
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        if ( minIndex > 0.5*pop && maxIndex < 0.5*pop ) 

            choose = 2; 

        end 

        if ( minIndex < 0.5*pop && maxIndex > 0.5*pop ) 

            choose = 3; 

        end 

        if ( minIndex > 0.5*pop && maxIndex > 0.5*pop ) 

            choose = 4; 

        end 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        if choose < 3 

            for i = (pop/2+1) : pop 

                x( i, : ) = x( i, : ) * ( 1 + randn ); 

                x( i, : ) = Bounds( x( i, : ), lb, ub ); 

                fit( i ) = feval(fhd, x( i, : )',varargin{:} ); 

            end 

            if choose == 1  

                x( minIndex,: ) = x( minIndex,: ) * ( 1 + randn ); 

                x( minIndex, : ) = Bounds( x( minIndex, : ), lb, ub ); 

                fit( minIndex ) = feval(fhd, x( i, : )',varargin{:} ); 

            end 

            for i = 1 : 0.5*pop 

                if choose == 2 || minIndex ~= i 

                    person = randi( [(0.5*pop+1), pop ], 1 ); 

                    x( i, : ) = x( i, : ) + (pX(person, :) - x( i, : )) * FL( i ); 

                    x( i, : ) = Bounds( x( i, : ), lb, ub ); 

                    fit( i ) = feval(fhd, x( i, : )',varargin{:} ); 

                end 

            end 

        else 

            for i = 1 : 0.5*pop 

                x( i, : ) = x( i, : ) * ( 1 + randn ); 

                x( i, : ) = Bounds( x( i, : ), lb, ub ); 

                fit( i ) = feval(fhd, x( i, : )',varargin{:} ); 

            end 

            if choose == 4  

                x( minIndex,: ) = x( minIndex,: ) * ( 1 + randn ); 

                x( minIndex, : ) = Bounds( x( minIndex, : ), lb, ub ); 

                fit( minIndex ) = feval(fhd, x( i, : )',varargin{:} ); 

            end 

            for i = (0.5*pop+1) : pop 

                if choose == 3 || minIndex ~= i 

                    person = randi( [1, 0.5*pop], 1 ); 

                    x( i, : ) = x( i, : ) + (pX(person, :) - x( i, : )) * FL( i ); 

                    x( i, : ) = Bounds( x( i, : ), lb, ub ); 
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                    fit( i ) = feval(fhd, x( i, : )',varargin{:} ); 

                end 

            end    

        end 

         

    end 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % Update the individual's best fitness vlaue and the global best one 

    

    for i = 1 : pop  

        if ( fit( i ) < pFit( i ) ) 

            pFit( i ) = fit( i ); 

            pX( i, : ) = x( i, : ); 

        end 

         

        if( pFit( i ) < fMin ) 

            fMin = pFit( i ); 

            bestX = pX( i, : ); 

        end 

        [~,pos]=min(fit); 

         Diver=Diversidad(x,pos); 

%          out=evalfis(a,[itrtn;Diver]); 

        Convergence_curve(iteration)=fMin; 

    end 

    arquitec(iteration).best = fMin;   %curva de convergencia 

    arquitec(iteration).mejopos = bestX; 

    arquitec(iteration).iteration = iteration; 

    arquitec(iteration).c1 = c1; 

    arquitec(iteration).c2 = c2; 

    save('Resultados\pruebadivfx23fis1t\mat\mat2\experimentofun23.mat','arquitec') 

     

 end 

disp('end'); 

end 

 

% Application of simple limits/bounds 

function s = Bounds( s, Lb, Ub) 

  % Apply the lower bound vector 

  temp = s; 

  I = temp < Lb; 

  temp(I) = Lb; 

   

  % Apply the upper bound vector  

  J = temp > Ub; 

  temp(J) = Ub; 
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  % Update this new move  

  s = temp; 

end 

%-------------------------------------------------------------------------- 

% This function generate "dim" values, all of which are different from 

%  the value of "tabu" 

function value = randiTabu( min, max, tabu, dim ) 

value = ones( dim, 1 ) .* max .* 2; 

num = 1; 

while ( num <= dim ) 

    temp = randi( [min, max], 1, 1 ); 

    if( length( find( value ~= temp ) ) == dim && temp ~= tabu ) 

        value( num ) = temp; 

        num = num + 1; 

    end 

end 

end 
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Appendix B. Knowledge representation 

 

The following is the knowledge representation of the different fuzzy inference systems that 

yielded better results. 

 

Type-1 fuzzy system knowledge representation for heart rate classification 

 

In this section, the knowledge representation of Type-1 fuzzy system for obtaining the heart 

rate level with trapezoidal membership functions and optimized by BSA is presented. 

 

Inputs variables  

 

The input Age uses "Child", "Young", "Adult" and "Elder” as linguistic variable. The values 

of each point of the fuzzy system are presented as follows: 

 

𝜇𝑐ℎ𝑖𝑙𝑑(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 0
1, 0 ≤ 𝑥 ≤ 5.684

13.76 − 𝑥

8.076
, 5.684 ≤ 𝑥 ≤ 13.76

0, 13.76 ≤ 𝑥

 (B.1) 

𝜇𝑦𝑜𝑢𝑛𝑔(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 9
𝑥 − 9

6.85
, 9 ≤ 𝑥 ≤ 15.85

1, 15.85 ≤ 𝑥 ≤ 31.12
33.85 − 𝑥

2.73
, 31.12 ≤ 𝑥 ≤ 33.85

0, 33.85 ≤ 𝑥

 (B.2) 

𝜇𝑎𝑑𝑢𝑙𝑡(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 32.15
𝑥 − 32.15

11.6
, 32.15 ≤ 𝑥 ≤ 43.75

1, 43.75 ≤ 𝑥 ≤ 55.35
60.91 − 𝑥

5.56
, 55.35 ≤ 𝑥 ≤ 60.91

0, 60.91 ≤ 𝑥

 (B.3) 

𝜇𝑒𝑙𝑑𝑒𝑟(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 54.18
𝑥 − 54.18

31.1
, 54.18 ≤ 𝑥 ≤ 85.28

1, 85.28 ≤ 𝑥 ≤ 100
0, 100 ≤ 𝑥

 (B.4) 
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The input Heart Rate variable uses "Very Low", "Low", "Normal", "High" and "VeryHigh” as 

linguistic variable. The values of each point of the fuzzy system are given below: 

 

 

𝜇𝑣𝑒𝑟𝑦𝑙𝑜𝑤(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 0
1, 0 ≤ 𝑥 ≤ 12.38

32.45 − 𝑥

19.07
, 13.38 ≤ 𝑥 ≤ 32.45

0, 32.45 ≤ 𝑥

 (B.5) 

𝜇𝑙𝑜𝑤(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 26.32
𝑥 − 26.32

7.38
, 26.32 ≤ 𝑥 ≤ 33.7

1, 33.7 ≤ 𝑥 ≤ 48.51
62.5 − 𝑥

13.99
, 48.51 ≤ 𝑥 ≤ 62.5

0, 62.5 ≤ 𝑥

 (B.6) 

𝜇𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 58.63
𝑥 − 58.63

10.13
, 58.63 ≤ 𝑥 ≤ 68.76

1, 68.76 ≤ 𝑥 ≤ 85.12
98.71 − 𝑥

13.59
, 85.12 ≤ 𝑥 ≤ 98.71

0, 98.71 ≤ 𝑥

 (B.7) 

𝜇ℎ𝑖𝑔ℎ(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 90.12
𝑥 − 90.12

23.58
, 90.12 ≤ 𝑥 ≤ 113.7

1, 113.7 ≤ 𝑥 ≤ 143.2
158.9 − 𝑥

15.7
, 143.2 ≤ 𝑥 ≤ 158.9

0, 158.9 ≤ 𝑥

 (B.8) 

𝜇𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 143.5
𝑥 − 143.5

50.1
, 143.5 ≤ 𝑥 ≤ 193.6

1, 193.6 ≤ 𝑥 ≤ 220
0, 220 ≤ 𝑥

 (B.9) 

 

 

Output variable  

The output Heart Rate Level uses "Low", "BeloWAV", "Excelent", "AboveAV" and 

"VeryHigh" as linguistic variables. The values of each point of the fuzzy system are presented as 

follows: 
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𝜇𝑙𝑜𝑤(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 0
1, 0 ≤ 𝑥 ≤ 4.977

13.4 − 𝑥

8.423
, 4.977 ≤ 𝑥 ≤ 13.4

0, 13.4 ≤ 𝑥

 (B.10) 

𝜇𝑏𝑒𝑙𝑜𝑤𝑎𝑣(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 10.97
𝑥 − 10.97

5.77
, 10.97 ≤ 𝑥 ≤ 16.74

1, 16.74 ≤ 𝑥 ≤ 23.96
27.17 − 𝑥

3.21
, 23.96 ≤ 𝑥 ≤ 27.17

0, 27.17 ≤ 𝑥

 (B.11) 

𝜇𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛 𝑡(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 26.55
𝑥 − 26.55

4.46
, 26.55 ≤ 𝑥 ≤ 31.01

1, 31.07 ≤ 𝑥 ≤ 39.06
43.84 − 𝑥

4.78
, 39.06 ≤ 𝑥 ≤ 43.84

0, 43.84 ≤ 𝑥

 (B.12) 

𝜇𝑎𝑏𝑜𝑣𝑒𝑎𝑣(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 39.42
𝑥 − 39.42

8.54
, 39.42 ≤ 𝑥 ≤ 47.96

1, 47.96 ≤ 𝑥 ≤ 62.98
71.81 − 𝑥

8.83
, 62.98 ≤ 𝑥 ≤ 71.81

0, 71.81 ≤ 𝑥

 (B.13) 

𝜇𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 66.87
𝑥 − 66.87

20.57
, 66.87 ≤ 𝑥 ≤ 87.44

1, 87.44 ≤ 𝑥 ≤ 100
0, 100 ≤ 𝑥

 

(B.14) 

 

 

IT2FS knowledge representation using Gaussian membership functions  

 

The knowledge representation of the optimized IT2FS for obtaining the classification of the 

heart rate level using Gaussian membership functions is described in this section. 

 

 

 

 



Appendix 

- 146 - 

 

Inputs variables 

The input Age uses "Child", "Young", "Adult" and "Elder” as linguistic variables for each 

upper and lower membership functions. The values of each point of the fuzzy system are presented 

as follows: 

 

𝜇𝑐ℎ𝑖𝑙𝑑(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 0

7.72
)
2

] (B.15) 

𝜇𝑐ℎ𝑖𝑙𝑑(𝑥) = exp [−
1

2
(
𝑥 − 0

7.72
)
2

] (B.16) 

𝜇𝑦𝑜𝑢𝑛𝑔(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 23.54

7.72
)
2

] (B.17) 

𝜇𝑦𝑜𝑢𝑛𝑔(𝑥) = exp [−
1

2
(
𝑥 − 23.54

7.72
)
2

] (B.18) 

𝜇𝑎𝑑𝑢𝑙𝑡(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 46.13

5.426
)
2

] (B.19) 

𝜇𝑎𝑑𝑢𝑙𝑡(𝑥) = exp [−
1

2
(
𝑥 − 46.13

5.426
)
2

] (B.20) 

𝜇𝑒𝑙𝑑𝑒𝑟(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 100

24.82
)
2

] (B.21) 

𝜇𝑒𝑙𝑑𝑒𝑟(𝑥) = exp [−
1

2
(
𝑥 − 100

24.82
)
2

] (B.22) 

 

The Input Heart Rate variable uses "Very Low", "Low", "Normal", "High" and "VeryHigh” as 

linguistic variables for each upper and lower membership functions. The values of each point of 

the fuzzy system are presented as follows: 

 

𝜇𝑣𝑒𝑟𝑦𝑙𝑜𝑤(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 0

10.91
)
2

] (B.23) 

𝜇𝑣𝑒𝑟𝑦𝑙𝑜𝑤(𝑥) = exp [−
1

2
(
𝑥 − 0

10.91
)
2

] (B.24) 

𝜇𝑙𝑜𝑤(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 42.25

9.739
)
2

] (B.25) 
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𝜇𝑙𝑜𝑤(𝑥) = exp [−
1

2
(
𝑥 − 42.25

9.739
)
2

] (B.26) 

𝜇𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 77.94

9.381
)
2

] (B.27) 

𝜇𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) = exp [−
1

2
(
𝑥 − 77.94

9.381
)
2

] (B.28) 

𝜇ℎ𝑖𝑔ℎ(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 127.5

18.94
)
2

] (B.29) 

𝜇ℎ𝑖𝑔ℎ(𝑥) = exp [−
1

2
(
𝑥 − 127.5

18.94
)
2

] (B.30) 

𝜇𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 220

40.86
)
2

] (B.31) 

𝜇𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ(𝑥) = exp [−
1

2
(
𝑥 − 220

40.86
)
2

] (B.32) 

 

Output variable 

The output Heart Rate Level uses "Low", "BeloWAV", "Excelent", "AboveAV" and 

"VeryHigh" as linguistic variables for each lower and upper membership functions. The values of 

each point of the fuzzy system are presented as follows: 

 

𝜇𝑙𝑜𝑤(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 0

4.432
)
2

] (B.33) 

𝜇𝑙𝑜𝑤(𝑥) = exp [−
1

2
(
𝑥 − 0

4.432
)
2

] (B.34) 

𝜇𝑏𝑒𝑙𝑜𝑤𝑎𝑣(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 19.55

4.236
)
2

] (B.35) 

𝜇𝑏𝑒𝑙𝑜𝑤𝑎𝑣(𝑥) = exp [−
1

2
(
𝑥 − 19.55

4.236
)
2

] (B.36) 

𝜇𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 35.38

4.649
)
2

] (B.37) 

𝜇𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡(𝑥) = exp [−
1

2
(
𝑥 − 35.38

4.649
)
2

] (B.38) 

𝜇𝑎𝑏𝑜𝑣𝑒𝑎𝑣(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 60.25

7.076
)
2

] 
 

(B.39) 
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𝜇𝑎𝑏𝑜𝑣𝑎𝑣(𝑥) = exp [−
1

2
(
𝑥 − 60.25

7.076
)
2

] (B.39) 

𝜇𝑎𝑏𝑜𝑣𝑒𝑎𝑣(𝑥) = 𝛼 exp [−
1

2
(
𝑥 − 100

17.09
)
2

] (B.40) 

𝜇𝑎𝑏𝑜𝑣𝑎𝑣(𝑥) = exp [−
1

2
(
𝑥 − 100

17.09
)
2

] (B.41) 

 

 

Knowledge representation of the fuzzy classifier to obtain the nocturnal blood pressure 

profile 

 

This part it describes the knowledge representation of the optimized Type-1 fuzzy system for 

the classification of the nocturnal blood pressure profile with trapezoidal membership functions. 

 

 

Inputs variables 

 

The Input Systolic variable uses "Low", "Normal", "High", and "VeryHigh” as linguistic 

variables. The values of each point of the fuzzy system are presented as follows: 

 

 

𝜇𝑙𝑜𝑤(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 0.4
1, 0.4 ≤ 𝑥 ≤ 0.6655

0.8 − 𝑥

0.1345
, 0.6655 ≤ 𝑥 ≤ 0.8

0, 0.8 ≤ 𝑥

 (B.42) 

𝜇𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 0.787
𝑥 − 0.787

0.024
, 0.787 ≤ 𝑥 ≤ 0.811

1, 0.811 ≤ 𝑥 ≤ 0.889
0.9102 − 𝑥

0.0212
, 0.889 ≤ 𝑥 ≤ 0.9102

0, 0.9102 ≤ 𝑥

 (B.43) 

𝜇ℎ𝑖𝑔ℎ(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 0.898
𝑥 − 0.898

0.025
, 0.898 ≤ 𝑥 ≤ 0.923

1, 0.923 ≤ 𝑥 ≤ 0.9821
1.02 − 𝑥

0.0379
, 0.9821 ≤ 𝑥 ≤ 1.02

0, 1.02 ≤ 𝑥

 (B.44) 
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𝜇𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 1.001
𝑥 − 1.001

0.089
, 1.001 ≤ 𝑥 ≤ 1.09

1, 1.09 ≤ 𝑥 ≤ 1.3
0, 1.3 ≤ 𝑥

 (B.45) 

 

 

The Input Diastolic variable uses "Low", "Normal", "High", and "VeryHigh” as linguistic 

variables. The values of each point of the fuzzy system are presented as follows: 

 

𝜇𝑙𝑜𝑤(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 0.4
1, 0.4 ≤ 𝑥 ≤ 0.6655

0.8 − 𝑥

0.1345
, 0.6655 ≤ 𝑥 ≤ 0.8

0, 0.8 ≤ 𝑥

 (B.45) 

𝜇𝑛𝑜𝑟𝑚𝑎𝑙(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 0.787
𝑥 − 0.787

0.024
, 0.787 ≤ 𝑥 ≤ 0.811

1, 0.811 ≤ 𝑥 ≤ 0.889
0.9102 − 𝑥

0.0212
, 0.889 ≤ 𝑥 ≤ 0.9102

0, 0.9102 ≤ 𝑥

 (B.46) 

𝜇ℎ𝑖𝑔ℎ(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 0.898
𝑥 − 0.898

0.025
, 0.898 ≤ 𝑥 ≤ 0.923

1, 0.923 ≤ 𝑥 ≤ 0.9821
1.02 − 𝑥

0.0379
, 0.9821 ≤ 𝑥 ≤ 1.02

0, 1.02 ≤ 𝑥

 (B.47) 

𝜇𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 1.004
𝑥 − 1.004

0.086
, 1.004 ≤ 𝑥 ≤ 1.09

1, 1.09 ≤ 𝑥 ≤ 1.3
0, 1.3 ≤ 𝑥

 (B.48) 
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The Output Nocturnal Blood Pressure Profile variable has the linguistic values "Extreme 

Dipper", "Dipper", "Non-Dipper" and "Riser", for each upper and lower membership functions. 

The values of each point of the fuzzy system are presented as follows: 

 

 

𝜇𝑒𝑥𝑡𝑑𝑖𝑝𝑝𝑒𝑟(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 0.4
1, 0.4 ≤ 𝑥 ≤ 0.6655

0.8 − 𝑥

0.1345
, 0.6655 ≤ 𝑥 ≤ 0.8

0, 0.8 ≤ 𝑥

 (B.49) 

𝜇𝑑𝑖𝑝𝑝𝑒𝑟(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 0.787
𝑥 − 0.787

0.024
, 0.787 ≤ 𝑥 ≤ 0.811

1, 0.811 ≤ 𝑥 ≤ 0.889
0.9102 − 𝑥

0.0212
, 0.889 ≤ 𝑥 ≤ 0.9102

0, 0.9102 ≤ 𝑥

 (B.50) 

𝜇𝑛𝑜𝑛𝑑𝑖𝑝𝑝𝑒𝑟(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 0.898
𝑥 − 0.898

0.025
, 0.898 ≤ 𝑥 ≤ 0.923

1, 0.923 ≤ 𝑥 ≤ 0.9821
1.02 − 𝑥

0.0379
, 0.9821 ≤ 𝑥 ≤ 1.02

0, 1.02 ≤ 𝑥

 (B.51) 

𝜇𝑟𝑖𝑠𝑒𝑟(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 1.006
𝑥 − 1.006

0.084
, 1.006 ≤ 𝑥 ≤ 1.09

1, 1.09 ≤ 𝑥 ≤ 1.3
0, 1.3 ≤ 𝑥

 (B.52) 
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Appendix C. Graphical User Interface 

 

To visualize the results of all the soft computing techniques used in this research, a graphical 

user interface is designed, which can be seen in Fig. C1 and each of its parts are described below: 

 

 

 

 

 

 

 

 

 

Fig. C.1 Graphical user interface 
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1. In the upper right part there are different buttons for its operation: 

a) Open: It is used to find the file where the patient's blood pressure records are located. 

b) Evaluate: Patient readings are evaluated by the neural networks and fuzzy classifiers 

used. 

c) Clean: To clean the entered records 

d) Exit: Exit the interface. 

2. Patient data is displayed, such as patient number, name, age 

3. The records of the patient's blood pressure obtained throughout the study are displayed 

graphically. 

4. Risk factors: The data corresponding to the patient's risk factors are entered. These will be the 

input to the artificial neural networks to obtain the risk of developing hypertension and the risk of 

developing a cardiovascular event. 

5. Time when: The time in which the patient falls asleep and wakes up is entered. 

6. 24 Hours BP: It is the trend of blood pressure obtained by the modular neural network 

7. Day time and night time BP: It is observed how the patient's blood pressure behaves in the day 

and at night, this information will help us to know the night profile of the patient's blood pressure. 

8. Pulse level: Obtain the heart rate level given by the fuzzy classifier 

9. Risk of developing hypertension: The risk of the patient in developing hypertension in 4 years 

is obtained, which is provided by the artificial neural network, if the patient is hypertensive, it 

shows a legend where it is indicated. 

10. Risk of developing cardiovascular disease: The risk of developing a cardiovascular event in 10 

years and the age of the heart is obtained. Said result is provided by a modular neural network. 

11. Nocturnal blood pressure: The result corresponding to the patient's nocturnal profile is 

displayed, which is provided by a fuzzy classifier, and if the patient is nocturnal hypertensive, it 

also shows said result. 

12. Diagnosis: Presents the patient's blood pressure classification, which is provided by a fuzzy 

classifier. 
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An example of its operation is shown in Fig. C2. It can be observed that, by providing the 

patient's blood pressure level, the label is highlighted in color, this is according to the patient's 

blood pressure level. 

 

 

 

 

 

 

 

Fig. C.2 Results obtained by GUI 
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In the same way, if no risk factor is entered, an alert window will be displayed, as illustrated 

in Fig. C3. 

 

 

 

 
Fig. C.3 Warning messages 




