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Resumen 

 

En la actualidad, diferentes métodos han sido utilizados para resolver problemas 

de clasificación, sin embargo, existen problemas complejos en los que un método 

no puede resolver satisfactoriamente el problema. En el área médica, en 

específico cardiología, diferentes métodos han sido utilizados para ayudar en la 

interpretación de diversas morfologías o patrones electrocardiográficos que 

representan diferentes enfermedades cardiacas que son diagnosticadas por la 

interpretación de los mismos como son LVQ, MLP, modelos de Markov, mapas 

auto-organizados, sistemas lineales discriminantes, enfoques Bayesianos, SVM, 

sistemas expertos, sistemas de inferencia difusos,  así como también sistemas 
híbridos, entre otros.  

En este trabajo de tesis la principal aportación es la creación de un nuevo 

clasificador con enfoque modular utilizando lógica difusa tipo 2 y redes neuronales 
artificiales. 

La metodología propuesta se aplicó como casos de estudio en el ámbito médico  

utilizando las bases de datos de electrocardiogramas, primeramente la base datos 

de arritmias del MIT-BIH y posteriormente la base de datos diagnóstica de 

electrocardiogramas PTB. Finalmente se muestra un estudio estadístico para 
demostrar las ventajas de la metodología propuesta con respecto a otros métodos. 
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Abstract 

Currently, different methods have been used to solve classification problems, 

however, there are complex problems in which a method cannot satisfactorily solve 

the problem. In the medical area, in specific, different methods have been used to 

help in the interpretation of various morphologies or electrocardiographic patterns 

that represent different heart diseases that are diagnosed by their interpretation, 

such as LVQ, MLP, Markov models, self-organized maps, Discriminant linear 

systems, Bayesian approaches, SVM, expert systems, fuzzy inference systems, as 

well as hybrid systems, among others.  

 

In this thesis work, the main contribution is the creation of a new classifier with a 

modular approach using type 2 fuzzy logic and artificial neural networks.  

 

The proposed methodology was applied as case studies in the medical field using 

the electrocardiogram databases, firstly the MIT-BIH arrhythmia database and later 

the PTB diagnostic ECG database. Finally, a statistical study is shown to 

demonstrate the advantages of the proposed methodology with respect to other 

methods. 
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Chapter 1  
Introduction 

An electrocardiogram (ECG) illustrates the electrical activity of the heart. 

The ECG contains relevant information for the physicians to perform a complete 

medical diagnosis of the patient. The ECG is the common standard tool used for 

obtaining heart disease diagnosis. The physicians obtain the signals easily and 

non-invasively by adding electrodes to patient’s body. The Holter device is a 

frequently used device for ECG recording. Physicians use the Holter device on the 

patient when it is required to monitor their ECG to find for the existence of some 

abnormal heartbeats in the ECG of a complete day. A person can register around 

100,000 cardiac cycles in a day and represents a challenge wanting to analyze all 

this information to make a diagnosis. 

Different methods have been currently proposed to help in the interpretation 

of the different morphologies or electrocardiographic patterns that represent 

different diseases that are diagnosed by interpreting the electrocardiograms [24, 

28, 29, 42]. Such as learning vector quantization (LVQ) [1, 39], multilayer 

perceptron (MLP) [12, 56, 21, 19, 52, 35, 4, 5, 43, 48, 64, 65], Markov models, self-

organizing maps (SOM), linear discriminant systems, Bayesian approach, support 

vector machines (SVM) [22, 15, 43], higher order statistics [31, 32, 33, 34], expert 

systems, type-1 fuzzy systems [16, 56, 61, 4, 49], type-2 fuzzy systems [37, 6, 38, 

36, 60], statistical and syntactic pattern recognition, fuzzy KNN algorithm [56, 4, 23, 

36], as well as hybrid systems [11, 62, 41, 40, 46, 47, 18, 44, 57, 66], Other 

solutions implement optimization algorithms such as Ant Colony and Particle 

Swarm Optimization [9, 25, 63]. Some solutions are focus on the preprocessing 

process such as PCA, LDA, ICA, and Discrete Wavelet Transform [32, 45], linear 

and nonlinear features [7, 8, 10, 17, 26, 27, 59]. Finally, with respect to the ECG 
signal analysis approach [50, 51, 58]. 

The hybridization of methods can increase the performance in a system and 

take advantage of the benefits offered by such techniques in solving complex 

problems. The interpretation of electrocardiograms is a useful task for physicians, 

but when it comes to reviewing more of 24 hours of information it becomes a 
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laborious task for them. For this reason, design a computational model that helps 
such a task, is very useful for the timely medical diagnosis [9, 11, 14, 20]. 

The rest of this thesis is structured as follows: Important basic concepts as 

background theory are presented in Chapter 2 to understand the context in which 

we have applied this research. In Chapter 3, the new modular approach for forming 

classifier models of the proposed method and the problem description are 

discussed. In Chapter 4, details for the performed experiments of study cases are 

presented. The conclusions and future works of this research are described in 
Chapter 5. Finally, the references and appendix are presented. 
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Chapter 2.  
Background Theory 

In this chapter, we present a brief description of basic concepts about the 

methods used for the development of this thesis such as Hybrid Intelligent 

Systems, Artificial Neural Networks: Multilayer Perceptron and Radial Basis 

Function Neural Networks, Fuzzy Logic, Fuzzy KNN algorithm and general review 

of adapting in classification systems. All these concepts are important in order to 
described the proposed method of this research. 

2.1 Hybrid Intelligent Systems 
 

The hybridization of methods can increase the performance in a system and 

take advantage of the benefits offered by such techniques in solving complex 
problems [9, 11, 14, 20]. 

2.2 Artificial Neural Networks 
 

An artificial neuron is a mathematical model of a biological neuron. The body 

of the neuron is a node that performs two functions: it computes the sum of the 

weighted input signals, and it applies an output function to the sum. The input 

signals are multiplied by weights before the sum and output functions are applied; 

this models the synapse. The output function is usually nonlinear; examples are: 

(1) converting the neuron’s output to a set of discrete values (turn a light on or off); 

(2) limiting the range of the output values (the motor power can be between   −100  

and 100; (3) normalizing the range of output values (the volume of a sound is 

between 0 (mute) and 1 (maximum). In Figure 2.1, the ANN with one neuron and 
one and two inputs are presented [2]. 

 

 

 

 

 

Figure 2.1 a) ANN with one neuron and one input and 

          b) ANN with one neuron and two input 
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Where f represent neuron output function, symbol “+” the sum of the inputs, 

𝑥𝑖 the inputs, 𝑦𝑖 the outputs, 𝑤𝑖 the weights for the inputs and “1” constant input of 

value 1 [2]. 

Artificial neurons are analog models, that is, the inputs, outputs, weights and 

functions can be floating point numbers. Here we start with an unrealistic activity 

that demonstrates how artificial neurons work within the familiar context of digital 
logic gates [2]. 

2.3 Electrocardiograms 
 

An electrocardiogram (ECG) illustrates the electrical activity of the heart. 

The ECG contains relevant information for the physicians to perform a complete 

medical diagnosis of the patient. The ECG is the common standard tool used for 

obtaining heart disease diagnosis. The physicians obtain the signals easily and 

non-invasively by adding electrodes to patient’s body. The Holter device is a 

frequently used device for ECG recording. Physicians use the Holter device on the 

patient when it is required to monitor their ECG to find for the existence of some 

abnormal heartbeats in the ECG of a complete day. A person can register around 

100,000 cardiac cycles in a day and represents a challenge wanting to analyze all 

this information to make a diagnosis. 

2.4 Cardiac Arrhythmia 
 

By cardiac arrhythmia, we mean any alteration in the activity of the heart 

rhythm in duration, amplitude or form of the rhythm and present changes from 

normal electrical impulses. In other words, the arrhythmias are abnormal 
heartbeats. 
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2.5 The QRS Wave 
 

The morphology of the QRS wave is represented by the sequence of 

ventricular activation and the dominant vector force associated with each step. 

Normal ventricular depolarization can be simplified into two steps: depolarization of 

the septum followed by depolarization of the ventricular free walls because the 

Purkinje fibers are located just beneath the endocardium, activation of the 

ventricular walls spreads from the endocardium to the epicardium. The left aspect 

of the septum is the first part of the ventricles to depolarize. Normal septal 

depolarization occurs in a left-to-right direction. This results in the small septal R 

wave in the right precordial lead V1 and the small septal Q wave in V6. 

Depolarization of left and right ventricular free walls normally occurs 

simultaneously. The left ventricular free wall is composed of the area of the left 

ventricular wall not in contact with the interventricular septum and is not part of the 

apex. The right-to-left depolarization in the larger and thicker left ventricle 

comprises the dominating vector force. The ECG interprets this depolarization as a 

right-to-left force even though depolarization in the right ventricle slightly opposes 

this force. This dominant vector accounts for the large S wave in V1 that transitions 
in V3/V4 to become the large R wave in the left precordial leads (V6) [30, 14, 20]. 

2.6 Waves, Intervals, and Segments 
 

The P Wave. Atria is typically activated in a right-to-left direction as the electrical 

impulse spreads from the sinus node in the right atrium to the left atrium. The first 

half of the P wave therefore represents activation of the right atrium. In normal 

sinus rhythm, P waves should be upright in the inferior leads (reflecting the 

superior to inferior direction of the impulse from sinus to AV node). The P wave in 

V1 is upright or biphasic. The QRS Wave represents rapid ventricular 

depolarization and corresponds to phase 0 of the action potential. The QRS 

complex widens by a delay in the intra-ventricular conduction system and 

ventricular hypertrophy. The T Wave corresponds to rapid repolarization (phase 3 
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of the action potential). Repolarization of the epicardium follows by repolarization of 

the endocardium. The axis of the T wave should parallel that of the QRS wave 

when depolarization is normal.  The U Wave may by absent in the normal 

electrocardiogram. The source of the U wave is unclear but may represent His 
bundle/Purkinje fibers repolarization  [30, 14, 20]. 

The PR Interval represents the time for an impulse to travel from the atria to 

the ventricles, including the time it takes to travel through the AV node and bundle 

of His. PR prolongation most often results from delayed conduction within the AV 

node. PR shortening classically occurs when an impulse travels from the atrium to 

the ventricle through an accessory pathway that bypasses the delay in conduction 

that occurs in the AV node. The QT interval represents ventricular depolarization 

and repolarization, corresponding to phases 0 to 3 of the action potential and 

ventricular systole. QT prolongation often results from delay in repolarization. The 
R-R interval corresponds to a complete cardiac cycle  [30, 14, 20]. 

The time it takes for an impulse to travel from the AV node, through the His 

bundle, and to the ventricles is represented by the PR segment. During phase 2 or 

plateau phase of the action potential, the influx of intracellular calcium and 

subsequent release of intracellular calcium stores allow for ventricular contraction. 
This phase is represented by the ST segment  [30, 14, 20]. 

2.7 Autoregressive Models, Shannon Entropy and Multifractal Analysis 
Wavelets 
 

Many observed time series exhibit serial autocorrelation; that is, linear 

association between lagged observations. This suggest past observations might 

predict current observations. The autoregressive process models the conventional 

mean of y_t as a function of past observations, y_(t-1),y_(t-2),…,y_(t-p). An AR 

process that depends on p past observations is called an AR model of degree p, 

denoted by AR(p).                          
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Information entropy is the average rate at which information is produced by 

a stochastic source of data. The measure of information entropy associated with 

each possible data value is the negative logarithm of the probability mass function 
for the value, see equation 2.1. 

                                                                                  (2.1) 

 

           When the data source has a lower probability value, the event carries more 

information than when the source data has a higher probability value. Generally, 

entropy refers to disorder or uncertainty, and the definition of entropy used in 

information theory is directly analogous to the definition used in statistical 

thermodynamics. The concept of information entropy was introduced by Claude 
Shannon. 

Multifractal analysis is quasi-systematically performed using the coefficients 

of continuous or discrete wavelet transforms. Wavelet coefficients consist of 

quantities that mostly concentrate around 0, rendering the numerical computation 

of negative q moments extremely unstable or even theoretically infinite [17].   

Recently, an alternative approach has been proposed the wavelet leader 

(WL). This method is theoretically backed up by a strong mathematical framework. 
Also, its being defined from an discrete wavelet transform (DWT) [17]. 

2.8 Fuzzy K-Nearest Neighbor algorithm 
 

The fuzzy algorithm is similar to the crisp K-Nearest Neighbor. The Fuzzy K-

Nearest Neighbor algorithm assigns class membership to a sample vector rather 

than assigning the vector to a particular class. The basis of the Fuzzy KNN 

algorithm is to assign membership as a function of the vector’s distance from its K-

Nearest Neighbors and those neighbors’ memberships in the possible classes.  
The Fuzzy KNN algorithm is as follows: 

𝑆 = −�𝑃𝑖 log𝑃𝑖
𝑖
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BEGIN 

 Input x, of unknown classification 

 Set K, 1 <= K <= n. 

 Initialize i=1 

 DO UNTIL (K-nearest neighbors to x found) 

      Compute distances Euclidean from x to xi 

      IF (i <= K) THEN 

            Include xi in set of K-nearest neighbor 

      ELSE IF (xi closer to x than any previous nearest) 

                    THEN 

                       Delete the farthest of the K-nearest neighbors 

                       Include xi in the set of K-nearest neighbors           

              END IF 

 END DO UNTIL 

 Initialize i=1 

 DO UNTIL (x assigned membership in all classes (2.2)) 

  Compute ui(x)  

 END DO UNTIL 

END 

The equation 2.2 as a function of sample’s distance from its KNN training samples: 
 

(2.2) 

 

 

𝑢𝑖(𝑥) =
∑ 𝑢𝑖𝑖𝑘
𝑗=1 (1 �𝑥 − 𝑥𝑗�

2 (𝑚−1)⁄⁄ )

∑ (1 �𝑥 − 𝑥𝑗�
2 (𝑚−1)⁄⁄ )𝑘

𝑗=1
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 The memberships of the set of training samples are assign based on the 

distance from their class mean. Where m represents the scaling parameter with 

values between 1 and 2. The memberships are calculated by equation 2.2  for the 

test sample and assign to the class with major membership.  

2.9 Euclidean Distance 
 

The Euclidean distance between points p and q is the length of the line 
segment connecting them (pq). 

In Cartesian coordinates, if p=(p1, p2 …, pn ) and q= (q1, q2,…, qn) are two 

points in Euclidean n-space (d) from p to q,  or from q to p is given by the 
Pythagorean formula in equation 2.3, then: 

 

(2.3) 

2.10 Hamming Distance 
 

The Hamming distance is a metric expressing the distance between two 

objects by the number of mismatches among their pairs of variables. We present 

the Hamming distance in equation 2.4. 

 

 

(2.4) 

𝑑(𝑝, 𝑞) = 𝑑(𝑞,𝑝) 

=  �(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 +⋯+ (𝑞𝑛 − 𝑝𝑛)2 

 

                                                              

𝐷𝐻 =  �|𝑥𝑖 − 𝑦𝑖|
𝑘

𝑖=1

 

𝑥 = 𝑦 ⟹𝐷 = 0 

   

where  
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2.11 Cosine Similarity Distance 
 

The cosine similarity between two vectors is a measure that calculates the 

cosine of the angle between them. This metric is a measurement of orientation and 

not magnitude, in equation 2.5. 

 

(2.5) 

2.11 City Block Distance 
 

The city block distance between two points, a and b, with k dimensions is 

calculated, in equation 2.6 as: 

(2.6) 

 

These basic concepts represents the fundamental basis as background 
theory to understand the rest of this thesis respect to the proposed method and as 
well as the context where it was applied.  

 

 

 

 

 

 

 

𝑎⃗ ∙ 𝑏�⃗ = ‖𝑎⃗‖�𝑏�⃗ � cos 𝜃 

cos 𝜃 =  𝑎�⃗ ∙𝑏�⃗
‖𝑎�⃗ ‖�𝑏�⃗ �

  

 

                 𝑑 = ∑ �𝑎𝑗 − 𝑏𝑗�𝑘
𝑗=1                                                
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Chapter 3 
Proposed method  

3.1 A new Modular approach for forming classifier models based on type-2 
Fuzzy Logic and Neural Networks 
 

In this work, we propose a new modular approach for forming classifier 

models based on type-2 Fuzzy Logic and Neural Networks. The main goal is to 

create a new classifier with a modular approach using type-2 Fuzzy Logic and 

Neural Networks to solve complex classification problems. Propose as a based on 

the Fuzzy K-Nearest Neighbors algorithm and Radial Basis Functions Neural 

Networks using type-2 Fuzzy Logic for the creation of expert modules. Create an 

adaptive mechanism for determining the number of expert modules and their 

configuration, which will be used in model formation. Integrate the results of the 

expert modules through a Mamdani type-2 Fuzzy Inference System, to finally 

obtain the global classification. Use different databases to testing our proposed 

model and different preprocessing methods for the databases. In the Figure 3.1, 
we show the Architecture of Modular Model of classification. 

In order to perform this work, we have applied the development of this thesis 

to arrhythmias classification problems through of study cases presented in details 

in the sections of chapter 4. 

The first case of study is related of 2-lead cardiac arrhythmia classification 

using two basic module units, where each basic module unit represents a lead and 

is composite by three different classifiers: Fuzzy KNN algorithm, MLP-GDM, MLP 

SCG, the final decision of the basic module unit is determined by type-1 and type-2 

Fuzzy Inference System. Each basic module unit is an expert for specific lead and 

all classes included in the MIT-BIH database.  Finally, the global decision of the 

hybrid intelligent system considering both basic module units is combined by a 
Fuzzy Inference System [53, 54].   

In this thesis, the main goal is to improve the global classification rate for 

arrhythmia classification, and we propose an approach using different 
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computational intelligence techniques to form a hybrid model as a classification 

method for 2-lead cardiac arrhythmias such as artificial neural networks and fuzzy 

logic. The hybrid model is composed by two basic module units. To perform the 

classification for each signal lead the basic module unit is used. Each basic module 

unit is composed by three classifiers based on the fuzzy KNN algorithm and MLP-

GDM and MLP-SCG. The output results of the classifiers in each basic module unit 

are combined with a type-1 FIS. Finally, we used type-1 FIS to combine the 

outputs of both basic module units achieving an improvement in the global 

classification rate of the proposed hybrid model. In addition, we have performed 

experiments using IT2FIS and we found out better results than type-1 FIS. This 

hybrid model can be extended to use 12 lead and other ECG databases for a 
complete medical diagnosis [9, 11, 14, 20]. 

The hybridization of methods can increase the performance in a system and 

take advantage of the benefits offered by such techniques in solving complex 

problems. The interpretation of electrocardiograms is a useful task for physicians, 

but when it comes to reviewing more than 24 hours of information, it becomes a 

laborious task for them. For this reason, design a computational model that helps 
such a task, is very useful for the timely medical diagnosis [9, 11, 14, 20]. 

In the second case of study, we present a 12-lead cardiac arrhythmia 

classification solution. We used PTB Diagnosis ECG database with 9 classes 

included. In this hybrid model is composite by 12 expert modules, where each one 

is expert in a specific lead: i, ii, iii, avf, avr, avl, v1, v2, v3, v4, v5 and v6. Finally, 

the global decision is determined by a type-1 and type-2 Fuzzy Inference System. 

The Fuzzy Inference Systems are based on ECG regions knowledge expert as 
medical criteria [30, 55].    

3.2 MIT-BIH arrhythmias database 

There are 48 electrocardiogram records of half-hour excerpts with two 

channels in the MIT-BIH arrhythmia database of 47 patients. The ECG records 

were obtained with a Holter device in Beth Israel Hospital. The MIT-BIH arrhythmia 

database includes annotations by cardiologists.   
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3.3 PTB Diagnostic ECG database 
The PTB Diagnostic ECG Database contains 549 ECG records from 290 

subjects, the subjects aged 17 to 87 years old. One to five ECG records represent 

each subject. Each ECG record includes 15 measured signals, the conventional 12 

leads: i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6, and three Frank lead such as vx, 

vy and vz. The diagnosis classes included in the database are Myocardial 

Infarction, Cardiomyopathy, Bundle Branch Block, Dysrhythmia, Myocardial 

Hypertrophy, Valvular Heart Disease, Myocarditis, Miscellaneous, and Healthy 

Controls. 

 

3.4 Preprocessing Stage 
       In this section, we describe in detail to the preprocessing stage for both study 

cases. In the first case of study, we have taken the samples of the heartbeats of 

the electrocardiograms of the MIT-BIH arrhythmia database, the segmentation was 

performed manually and the transformation process consists in rearranging the 

voltage values in the heartbeat signal, selecting only the 70 larger and 70 smaller 

voltage values, because the size of each heartbeat is different. This means that 

each heartbeat is represented by a vector with 140 voltage values [12, 54, 55, 56]. 

This transformation process simplifies the signal of the heartbeat to be classified of 

the hybrid model. The main goals of this work are the hybrid model as well as 

improving the global classification rate. In Figure 2.3, the architecture of modular 

model of classification are presented.  
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    For the second case of study, the PTB Diagnosis ECG, we applied a feature 

extraction process in order to reduce or simply the information of the selected 

samples of the electrocardiograms as well as for the classifiers captures the 

differences between the classes to improve the classification rate. We created a 

set of vectors that represent a complete signal or lead in the electrocardiogram; in 

other words, each electrocardiogram has its twelve feature vectors to be learning 

for the expert modules in the proposed hybrid intelligent system. The feature 

vectors are built with autoregressive models, Shannon entropies, and wavelets. 

 
3.5 Adaptive Mechanism 
       The adaptation feature represents the ability of the systems to learn about new 

situations to adjust itself in a flexible way to new environment conditions.  The 

adaptive mechanism in the proposed work is based on adaptation due to structural 

update or dynamic changing structure of the architecture of Modular Model of 

Classification. The main goal of the adaptive mechanism is to determine the 

number of expert modules and their configuration. 

 

             

 

Figure 3.1  Architecture of Modular Model of Classification 
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3.6 Classification Methods 
Three classifier models are used: fuzzy KNN algorithm, MLP-GDM, and 

MLP-SCG. Finally, the output results of the classifiers are combined in two ways, 

firstly with a type-1 FIS, as well as with an IT2FIS, and we want to show a 

comparison of the results with type-1 and type-2 fuzzy logic. Figure 3.2 illustrates 

the basic module unit for cardiac arrhythmia classification. 

Every classifier receives the same set of vectors that corresponds to the 

selected heartbeats. Each classifier produces an output that represents the specific 

classification of the heartbeat.  

 

3.7 Combined by a Fuzzy Inference System 

In the first case of study, the outputs of the classifiers form the integration 

matrix. The integration matrix is the input of both above-mentioned fuzzy systems. 

Finally, the fuzzy systems (type-1 FIS and IT2FIS) produce the final classification 

of the basic module unit for a ECG’s signal electrode. Finally the global 

classification is obtain using a Fuzzy Inference System [53, 54]. 

In the second case of study, the outputs of the expert modules form the 

integration matrix, and represent the input for the global classification obtained by 

the fuzzy systems (type-1 and type-2) FIS [55]. 
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Chapter 4 
Study Cases  
 

In this chapter, we present the different study cases used to form the hybrid 

models as a new classifier with a modular approach using Type-2 Fuzzy Logic and 

Neural Networks to solve complex classification problems developed in this thesis 

work. In Section 3 the general methodology of the proposal is shown, this 

methodology was applied to the following two study cases: 2-lead cardiac 

arrhythmia classification and 12-lead cardiac arrhythmia classification problems. 

4.1 2-lead cardiac arrhythmia classification 

There are 48 electrocardiogram records of half-hour excerpts with two 

channels or 2-lead in the MIT-BIH arrhythmia database of 47 patients. The ECG 

records were obtained with a Holter device in Beth Israel Hospital. The MIT-BIH 

arrhythmia database includes annotations by cardiologists.   

The samples of the classes are normal, and the different arrhythmias such 

as right bundle branch block, left bundle branch block, premature ventricular 

contraction, fusion paced and normal, atrial premature, aberrated atrial premature, 

fusion of ventricular and normal, ventricular escape, paced named N, LBB, RBB, 

PVC, FPN, AP, AAP, FVN, VE and P respectively. In Figure 4.1, we present some 

examples of normal beat and arrhythmias of the MIT-BIH arrhythmia database. 

4.1.1 Hybrid model based on neural networks, type-1 and type-2 fuzzy 
systems for 2-lead cardiac arrhythmia classification 

 

            This case of study describes an approach using computational intelligence 

methods to form a hybrid model as a classification method for 2-lead cardiac 

arrhythmias. The hybridization of methods can increase the performance in a 

system and take advantage of the benefits offered by such techniques in solving 

complex problems. The interpretation of electrocardiograms is a useful task for 

physicians, but when it comes to reviewing more than 24 hours of information, it 

becomes a laborious task for them [9, 11, 14, 20]. For this reason, the design a 
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computational model that helps in such a task is very useful for the timely medical 

diagnosis.  The hybrid model is built using artificial neural networks and fuzzy logic. 

Training and testing of the hybrid model was with the Massachusetts Institute of 

Technology and Beth Israel Hospital (MIT-BIH) arrhythmia database. The 

heartbeats are preprocessed to improve results of classification. Ten different 

classes of normal and arrhythmia signals for building the hybrid model are 

considered. We used two electrode signals or leads included in the MIT-BIH 

arrhythmia database, MLII and V1, V2, or V3 as second electrode signal. The 

hybrid model is composed by two basic module units, as described below. A basic 

module unit to perform the classification for each signal lead is used. Each basic 

module unit is composed of three different classifiers based on the following 

models: fuzzy KNN algorithm, multilayer perceptron with gradient descent and 

momentum (MLP-GDM), and multilayer perceptron with scaled conjugate gradient 

backpropagation (MLP-SCG). The outputs from the classifiers are combined using 

a fuzzy system for integration of results. We designed two fuzzy systems, Mamdani 

type-1 fuzzy system (type-1 FIS) and an interval type-2 fuzzy system (IT2FIS). The 

reason is to perform a comparison between type-1 FIS and IT2FIS in the hybrid 

model. We have obtained best results in the classification rate using IT2FIS 

instead of type-1 FIS in the basic units. Finally, a type-1 FIS is used to determine 

the global classification for the 2 basic units in a hybrid model. We obtained a good 

classification rate in each basic module unit, 92.90% and 92.70% of classification 

rate for basic modules unit 1 and unit 2 respectively. Finally, we obtained a 93.80% 

when used type-1 FIS and 94.20% of classification rate used IT2FIS combining 

both basic module units. In the results presented, we improve the global 

classification in the proposed hybrid model combining neural networks and fuzzy 

logic used both signal lead included in MIT-BIH arrhythmia database. The 

proposed hybrid model maybe extended to use multi-lead arrhythmia classification 

using other databases that contain 12 leads to be able to make a complete medical 
diagnosis.  
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The hybrid model is composed of two basic module units, where each module 

represents one electrode signal or lead of the electrocardiogram signal included in 

the MIT-BIH arrhythmia database. In Figure 4.2 is presented the proposed hybrid 

model. This hybrid model can be extended to 12-lead cardiac arrhythmia 

classification problem. We used an IT2FIS to perform the global arrhythmia 

classification of the hybrid model using the two basic module units. 
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Figure 4.2  Hybrid model for 2-lead cardiac arrhythmia classification 

 

 

 

 

 

 
Figure 4.1  Normal beat and arrhythmias of the MIT-BIH Arrhythmia Database 
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4.1.2 Preprocessing stage 
 

          In this section, we describe in detail to the preprocessing stage. We have 

taken the samples of the heartbeats of the electrocardiograms of the MIT-BIH 

arrhythmia database, the segmentation was performed manually and the 

transformation process consists in rearranging the voltage values in the heartbeat 

signal, selecting only the 70 larger and 70 smaller voltage values, because the size 

of each heartbeat is different. This means that each heartbeat is represented by a 

vector with 140 voltage values [12, 56, 4]. This transformation process simplifies 

the signal of the heartbeat to be classified of the hybrid model. The main goals of 

this work are the hybrid model as well as improving the global classification rate. 

4.1.3 Basic module unit 
 

          A basic module unit is used to solve the classification for each signal lead. 

Each module unit is composed of three different classifiers based on the following 

models: fuzzy KNN algorithm [23], MLP-GDM [2], and MLP-SCG [2]. The output 

results from the three classifiers are combined using a fuzzy system. We designed 

two fuzzy systems for this task, Mamdani type-1 FIS and an IT2FIS. The hybrid 

model used two basic module units. The basic module unit 1 learns the patterns of 

the classes for the specific MLII signal lead included in the MIT-BIH arrhythmia 

database. The basic module unit 2 learns the patterns of the classes for the 

second lead with the V1, V2 or V3 electrode signal. 

4.1.4 Classifiers 
 

          Three classifier models are used: fuzzy KNN algorithm, MLP-GDM, and 

MLP-SCG. Finally, the output results of the classifiers are combined in two ways, 

firstly with a type-1 FIS, as well as with an IT2FIS, and we want to show a 

comparison of the results with type-1 and type-2 fuzzy logic. Figure 4.3 illustrates 
the basic module unit for cardiac arrhythmia classification. 

           Every classifier receives the same set of vectors that corresponds to the 

selected heartbeats. Each classifier produces an output that represents the specific 
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classification of the heartbeat. The outputs of the classifiers form the integration 

matrix. The integration matrix is the input of both above-mentioned fuzzy systems. 

Finally, the fuzzy systems (type-1 FIS and IT2FIS) produce the final classification 
of the basic module unit for an ECG’s signal electrode. 

 

 

 

4.1.5 Type-1 Fuzzy System for basic module unit 
 

We used a type-1 FIS to combine the outputs of the classifiers in the basic 

module unit and details of the results for the experiments are presented in Section 

3. The specifications for the type-1 FIS are: Mamdani with 30 inputs; 10 inputs 

belonging to the first classifier fuzzy KNN algorithm, the next 10 inputs correspond 

for the second classifier MLP-GDM, the last 10 inputs corresponding for the third 

classifier MLP-SCG, the inputs and outputs are trapezoidal functions with linguistic 

variables Low_Classification, Medium_Classification, and High_Classification. The 

defuzzification method is by centroid. We have 260 rules to combine the outputs of 

the classifiers regarding the membership of the fuzzy KNN algorithm and the 

activation of the both MLPs, in the next part of this section we present some 

examples of the fuzzy rules. We show the type-1 FIS in Figure 4.4. 

 

 

 

 

              Figure 4.3  Basic module unit for cardiac arrhythmia classification 

 

 

Figure 4.4 Mamdani type-1 Fuzzy System 
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4.1.5.1 Input and output variables 
 

The membership function parameters for the inputs and outputs are expressed in 
equation 4.1, 4.2, 4.3 as:  

µLow(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧ 0, x≤-0.0529
x+0.0529
0.05033

, -0.0529≤x≤-0.00257

1, -0.00257≤x≤0.2701
0.322-x
0.1149

, 0.2071≤x≤0.322
0, 0.322≤x

                    (4.1) 

 

µMedium(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧

0, x≤0.323
x-0.323
0.134

, 0.323≤x≤0.457
1, 0.457≤x≤0.552

0.705-x
0.153

, 0.552≤x≤0.705
0, 0.705≤x

                         (4.2) 

 

 

µHigh(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧

0, x≤0.702
x-0.702
0.103

, 0.702≤x≤0.805
1, 0.805≤x≤1.004

0.705-x
0.046

, 1.004≤x≤1.05
0, 1.05≤x

                                                           (4.3) 

 

      The values for the membership functions were defined considering the three 

possible states such as Low, Medium and High, assigned and adjusted in a 

manual way. We also carried out experiments using other types of membership 

functions such as triangular, Gaussian, bell, and trapezoid. We obtained better 

results using trapezoidal function to combine the output results of the classifiers 
mentioned. 
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4.1.5.1 Fuzzy rules 
 

There are 260 fuzzy if-then rules in the type-1 fuzzy inference system, 26 rules 
represent the specific basic rules for each class. The basic rules are the following: 

1. IF (Normal_KNN IS HIGH_CLASSIFICATION) AND (Normal_MLP1 IS 

HIGH_CLASSIFICATION) AND (Normal_MLP2 IS HIGH_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

2. IF (Normal_KNN IS HIGH_CLASSIFICATION) AND (Normal_MLP1 IS 

HIGH_CLASSIFICATION) AND (Normal_MLP2 IS LOW_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

3. IF (Normal_KNN IS HIGH_CLASSIFICATION) AND (Normal_MLP1 IS 

HIGH_CLASSIFICATION) AND (Normal_MLP2 IS MEDIUM_CLASSIFICATION) 

THEN (Normal IS HIGH_CLASSIFICATION). 

4. IF (Normal_KNN IS HIGH_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS HIGH_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

5. IF (Normal_KNN IS HIGH_CLASSIFICATION) AND (Normal_MLP1 IS 

MEDIUM_CLASSIFICATION) AND (Normal_MLP2 IS HIGH_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

6. IF (Normal_KNN IS LOW_CLASSIFICATION) AND (Normal_MLP1 IS 

HIGH_CLASSIFICATION) AND (Normal_MLP2 IS HIGH_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

7. IF (Normal_KNN IS MEDIUM_CLASSIFICATION) AND (Normal_MLP1 IS 

HIGH_CLASSIFICATION) AND (Normal_MLP2 IS HIGH_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 
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8. IF (Normal_KNN IS HIGH_CLASSIFICATION) AND (Normal_MLP1 IS 

MEDIUM_CLASSIFICATION) AND (Normal_MLP2 IS 

MEDIUM_CLASSIFICATION) THEN (Normal IS HIGH_CLASSIFICATION). 

9. IF (Normal_KNN IS HIGH_CLASSIC) AND (Normal_MLP1 IS 

MEDIUM_CLASSIFICATION) AND (Normal_MLP2 IS LOW_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

10. IF (Normal_KNN IS HIGH_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS LOW_CLASSIFICATION) THEN 
(Normal IS HIGH_CLASSIFICATION). 

11. IF (Normal_KNN IS HIGH_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS MEDIUM_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

12. IF (Normal_KNN IS MEDIUM_CLASSIFICATION) AND (Normal_MLP1 IS 

HIGH_CLASSIFICATION) AND (Normal_MLP2 IS MEDIUM_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

13. IF (Normal_KNN IS MEDIUM_CLASSIFICATION) AND (Normal_MLP1 IS 

MEDIUM_CLASSIFICATION) AND (Normal_MLP2 IS HIGH_CLASSIFICATION) 

THEN (Normal IS HIGH_CLASSIFICATION). 

14. IF (Normal_KNN IS MEDIUM_CLASSIFICATION) AND (Normal_MLP1 IS 

HIGH_CLASSIFICATION) AND (Normal_MLP2 IS LOW_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

15. IF (Normal_KNN IS MEDIUM_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS HIGH_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 

16. IF (Normal_KNN IS LOW_CLASSIFICATION) AND (Normal_MLP1 IS 

MEDIUM_CLASSIFICATION) AND (Normal_MLP2 IS HIGH_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 
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17. IF (Normal_KNN IS MEDIUM_CLASSIFICATION) AND (Normal_MLP1 IS 

MEDIUM_CLASSIFICATION) AND (Normal_MLP2 IS 

MEDIUM_CLASSIFICATION) THEN (Normal IS MEDIUM_CLASSIFICATION). 

18. IF (Normal_KNN IS MEDIUM_CLASSIFICATION) AND (Normal_MLP1 IS 

MEDIUM_CLASSIFICATION) AND (Normal_MLP2 IS LOW_CLASSIFICATION) 
THEN (Normal IS MEDIUM_CLASSIFICATION). 

19. IF (Normal_KNN IS MEDIUM_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS MEDIUM_CLASSIFICATION) 
THEN (Normal IS MEDIUM_CLASSIFICATION). 

20. IF (Normal_KNN IS LOW_CLASSIFICATION) AND (Normal_MLP1 IS 

MEDIUM_CLASSIFICATION) AND (Normal_MLP2 IS 
MEDIUM_CLASSIFICATION) THEN (Normal IS MEDIUM_CLASSIFICATION). 

21. IF (Normal_KNN IS LOW_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS MEDIUM_CLASSIFCATION) 
THEN (Normal IS MEDIUM_CLASSIFICATION). 

22. IF (Normal_KNN IS MEDIUM_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS LOW_CLASSIFICATION) THEN 

(Normal IS MEDIUM_CLASSIFICATION). 

23. IF (Normal_KNN IS LOW_CLASSIFICATION) AND (Normal_MLP1 IS 

MEDIUM_CLASSIFICATION) AND (Normal_MLP2 IS LOW_CLASSIFICATION) 
THEN (Normal IS MEDIUM_CLASSIFICATION). 

24. IF (Normal_KNN IS LOW_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS LOW_CLASSIFICATION) THEN 
(Normal IS LOW_CLASSIFICATION). 

25. IF (Normal_KNN IS LOW_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS HIGH_CLASSIFICATION) 
THEN (Normal IS HIGH_CLASSIFICATION). 
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26. IF (Normal_KNN IS LOW_CLASSIFICATION) AND (Normal_MLP1 IS 

LOW_CLASSIFICATION) AND (Normal_MLP2 IS MEDIUM_CLASSIFICATION) 

THEN (Normal IS MEDIUM_CLASSIFICATION). 

In the fuzzy if-then rules we take into consideration for a specific class the 

outputs of the classifiers regarding the membership degrees from fuzzy KNN 

algorithm as the first classifier and the activations of both neural networks (MLP-

GDM and MLP-SCG) as second and third classifier respectively. We built the fuzzy 

rules in a manual way using as criteria the different expertise or knowledge of the 

classifiers by different experts with respect to the classification. We summarize the 

criteria used to develop the fuzzy rules as follows: first, if the three classifiers 

obtain the same opinion with respect to classify a specific sample then we keep the 

same fuzzy value; second, if two classifiers obtain the same linguistic value with 

respect to classify a specific sample and the linguistic value of the different opinion 

classifier represent major value, then the consequent obtain the linguistic value of 

the different opinion classifier; third, If two classifiers obtain the same linguistic 

value with respect to classify a specific sample and the linguistic value of the 

different opinion classifier represent lower linguistic value, then the consequent 

obtains the linguistic value of the two classifiers with the same opinion; if the three 

classifiers differ in opinion then the consequent obtains the higher linguistic value. 

We apply these three criteria to form the all fuzzy rules for the fuzzy system to 

combine all the output results of the classifiers in the basic module unit for the 
hybrid model. 

4.1.6 Interval Type-2 Fuzzy System for basic module unit 
 

In this work, we also used a type-2 fuzzy system to compare the global 

classification rate with respect to type-1 fuzzy logic. We propose using an Interval 

Type-2 Fuzzy (IT2FIS). We used the similar specifications than type-1 FIS above 

mentioned. The specifications of the IT2FIS are presented: Mamdani, 30 inputs, 10 

outputs. The inputs and outputs use trapezoidal functions for the fuzzy variables. 
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The fuzzy rules are a total of 260, and the centroid as a defuzzification method. 
Figure 4.5 illustrates the IT2FIS structure. 

 

 

 

 

 

 

4.1.6.1 Input and output variables 
 

The parameters of the membership functions for the inputs and outputs can 
be expressed as: 

•Low_Classification= [-0.4025; 0.4025; 0.08335; 0.08335; 0.07798; 0.8]. 

•Medium_Classification= [0.09747; 0.9025; 0.08333; 0.08335; 0.07796; 0.8]. 

•High_Classification= [0.5975; 1.402; 0.08335; 0.0835; 0.07798; 0.8]. 

4.1.6.2 Fuzzy rules 
 

We used the same above-mentioned set of fuzzy rules of the type-1 FIS to 

evaluate the proposed IT2FIS. We built the fuzzy rules in a manual way using the 
same criteria. 

4.1.7 Type-1 Fuzzy System and IT2FIS for Hybrid model 
 

In the hybrid model, a type-1 FIS is used to combine the results of two basic 

module units obtaining finally a global rate for cardiac arrhythmia classification and 

 

Figure 4.5 Interval Type-2 Fuzzy System 
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solving a 2-lead arrhythmia classification problem. The specifications of the type-1 
FIS are mentioned below. 

4.1.7.1 Input and output variables 

The parameters of membership functions for inputs and outputs can be 

expressed in equation 4.4, 4.5, 4.6 as: 

 

µLow(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧ 0, x≤-0.36
x+0.36
0.32

, -0.36≤x≤-0.04

1, -0.04≤x≤0.04
0.04-x
0.32

, 0.04≤x≤0.36
0, 0.36≤x

                          (4.4) 

 

µMedium(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧

0, x≤0.14
x-0.14
0.32

, 0.14≤x≤0.46
1, 0.46≤x≤0.54

0.86-x
0.32

, 0.54≤x≤0.86
0, 0.86≤x

                           (4.5) 

 

 

µHigh(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧

0, x≤0.64
x-0.64
0.32

, 0.64≤x≤0.96
1, 0.96≤x≤1.04

1.36-x
0.32

, 1.04≤x≤1.36
0, 1.36≤x

                           (4.6) 

The values for the membership functions were defined considering the three 

possible states such as Low, Medium and High, assigned and adjusted in a 
manual way. 

4.1.7.2 Fuzzy rules 

In the hybrid model a type-1 FIS and IT2FIS are used to combine the 

outputs of two leads for cardiac arrhythmia classification. In other words, to 
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combine the two basic module units. We built the fuzzy if-then rules in a manual 

way using the same criteria mentioned above. We have 90 fuzzy rules in total; 9 

fuzzy rules are the basic rules for each class to represent the knowledge in the 
fuzzy system. The basic fuzzy rules are listed as follows: 

1. IF (NormalUnit1 is LOW_CLASSFICATION) AND (NormalUnit2 is 
LOW_CLASSIFICATION) THEN (Normal is LOW_CLASSIFICATION). 

2. IF (NormalUnit1 is MEDIUM_CLASSIFICATION) AND (NormalUnit2 is 
MEDIUM_CLASSIFICATION) THEN (Normal is MEDIUM_CLASSIFICATION). 

3. IF (NormalUnit1 is HIGH_CLASSIFICATION) AND (NormalUnit2 is 
HIGH_CLASSIFICATION) THEN (Normal is HIGH_CLASSIFICATION). 

4. IF (NormalUnit1 is LOW_CLASSIFICATION) AND (NormalUnit2 is 

MEDIUM_CLASSIFICATION) THEN (Normal is MEDIUM_CLASSIFICATION). 

5. IF (NormalUnit1 is LOW_CLASSIFICATION) AND (NormalUnit2 is 

HIGH_CLASSIFICATION) THEN (Normal is HIGH_CLASSIFICATION). 

6. IF (NormalUnit1 is MEDIUM_CLASSIFICATION) AND (NormalUnit2 is 
LOW_CLASSIFICATION) THEN (Normal is MEDIUM_CLASSIFICATION). 

7. IF (NormalUnit1 is HIGH_CLASSIFICATION) AND (NormalUnit2 is 
LOW_CLASSIFICATION) THEN (Normal is HIGH_CLASSIFICATION). 

8. IF (NormalUnit1 is MEDIUM_CLASSIFICATION) AND (NormalUnit2 is 
HIGH_CLASSIFICATION) THEN (Normal is HIGH_CLASSIFICATION). 

9. IF (NormalUnit1 is HIGH_CLASSIFICATION) AND (NormalUnit2 is 
MEDIUM_CLASSIFICATION) THEN (Normal is HIGH_CLASSIFICATION). 

4.1.8 Experiments 

We used the 2 lead included in MIT-BIH arrhythmia database, the MLII 

signal and v1, v3 or v5 signal. The records used for the classes were: N 113, 115, 

and 122, LBBB 109, 111, and 214, RBBB 118, 124, and 212, PVC 106, 200 and 
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208 FPN 217, APB 209 and 222, AAPB 201, 202, and 210, FVNB 208 and 214, 
VEB 207, and PB 217. 

     We used the Matlab R2016a programming language, Fuzzy Logic 

Toolbox and Interval Type-2 Fuzzy Logic Toolbox to do experiments for the 

proposed hybrid model. The experiments were performed using a Mac Pro 6.1, 6-
Core Intel Xeon E5 3.5 Ghz and 16 GB RAM. 

      We have performed experiments using 10-fold cross validation to 

evaluate the hybrid model, that consist on partitioning the original set of samples of 

heartbeats into training set to train each classifier, and test set, herein for 

validation. There are 1000 samples of heartbeats in the dataset. Recall that each 

class represents 10% of the data, 100 samples per each class. We apply 10-fold 

cross validation. We created 10 disjoint random subsamples. In the first iteration, 

one subsample for validation and the other nine for training of the hybrid model are 

used. In the second iteration, a second subsample to validate and the rest for 

training and we repeated this process to complete 10 iterations of the 10-fold cross 

validation process. In each basic module unit, we have trained the three classifiers, 

selected different parameters and tested. For the first classifier, Fuzzy KNN 

algorithm, we used k= 1, 3, 4, and 5. For the second and third classifiers, MLP with 

gradient descent and momentum as training algorithm (MLP-GDM), we used 140 

input neurons, 50, 100 and 150 hidden neurons, log sigmoid transfer function, 

10000 epochs, learning rate 0.3 and momentum 0.5, 10 output neurons. For the 

third classifier, MLP with scale conjugate gradient backpropagation as training 

algorithm (MLP-SCG), 50, 100 and 150 hidden neurons, log sigmoid transfer 

function, 10000 epochs, learning rate 0.001, 10 input neurons. In this case, the 

output neurons represent the classes of arrhythmias. We selected the best results 

for each mentioned architecture to represent the classifiers. The outputs of the 

three classifiers form the integration matrix, herein the input for the type-1 FIS to 

combine the output results of the classifiers. Also we used IT2FIS to combine the 

output results of the classifiers. The outputs of the classifiers are evaluated for 

type-1 FIS and IT2FIS. In other words, both fuzzy systems, type-1 and IT2FIS 
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receive the same data vector of the integration matrix in their inputs. Around 7 

minutes it took the training of the IT2FIS from Unit 1 applied cross validation. We 

do the same process for both basic module units. Finally, we used other type-1 FIS 
to combine the output results for the two basic module units in the hybrid model.   

The equation 4.7 for the calculated classification rate coefficient is as follows: 

 

 

 

              (4.7) 

 

 

 

 

 

4.1.9 Results 

In this part, we present the results for the both basic module units 

separately, and the global results for the hybrid model proposed. In the last part of 

this section, we are present a statistical analysis to compare the results of the 

fuzzy systems.   

4.1.9.1 Results for the basic module unit 1 

Firstly, we are present the results for the first classifier into basic module unit 

1 we found out that the best result is with k=4 achieving a 90.3% of classification 

rate, as can be seen in confusion matrix in Table 4.1. For MLP-GDM, second 

classifier, with 150 hidden neurons, we obtained 83.9% of classification rate, see 

Table 4.2, and for the last classifier MLP-SCG we obtained best result used 50 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟 =  �
𝑇𝑇 + 𝑇𝑇

𝑇𝑇 + 𝑇𝑇 + 𝐹𝐹 + 𝐹𝐹
� ∗ 100 

 

 

Where TP is true positive prediction or correct positive prediction, 

TN is true negative prediction or correct negative prediction, 

FN is false negative prediction or incorrect negative prediction and 

FP is false positive prediction or incorrect positive prediction. 
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hidden neurons with a 92.80% of classification rate, see details in Table 4.3. The 

results for the type-1 FIS and IT2FIS are shown in Table 4.4 and Table 4.5 

respectively. The results for the basic module unit 1 are shown an increase in the 

final classification rate of the basic module unit 1 of 92.90% used type-1 FIS and 
93.6% used IT2FIS.  

In the last part of this section the results for the basic module unit 2 are 
presented. 

Table 4.1 Results for cross validation of fuzzy KNN algorithm, k=4, first classifier in basic 
module unit 1 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 97 0 0 0 0 1 0 2 0 0 

LBB 0 92 1 0 0 1 2 2 2 0 

RBB 0 2 96 0 1 0 1 0 0 0 

PVC 0 3 0 83 3 0 1 2 2 6 

FPN 1 0 2 2 85 0 1 6 0 3 

AP 0 1 0 0 0 92 7 0 0 0 

AAP 0 4 0 0 0 10 80 1 5 0 

FVN 3 4 1 2 2 1 1 86 0 0 

VE 0 0 0 0 0 0 5 0 95 0 

PB 0 0 0 1 2 0 0 0 0 97 

Classification rate= 90.3% 

 

Table 4.2 Results for cross validation of MLP-GDM, 150 hidden neurons, second classifier in 
basic module unit 1 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 97 0 0 0 0 0 0 3 0 0 

LBB 1 69 0 0 0 0 22 4 4 0 

RBB 4 3 73 0 18 1 0 0 1 0 

PVC 0 3 0 80 4 2 1 0 3 7 

FPN 0 1 3 2 90 1 0 1 0 2 

AP 0 0 0 0 0 99 1 0 0 0 

AAP 0 5 3 0 1 18 67 0 6 0 

FVN 2 20 0 3 0 2 0 73 0 0 

VE 0 0 0 0 0 0 5 0 95 0 

P 0 0 1 1 2 0 0 0 0 96 

Classification rate= 83.9% 
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Table 4.3 Results for cross validation of MLP-SCG 50 hidden neurons, third classifier in basic 
module unit 1 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 99 0 0 0 0 0 0 1 0 0 

LBB 3 87 3 0 1 0 1 3 2 0 

RBB 0 1 97 0 0 0 0 1 1 0 

PVC 0 4 0 86 2 0 3 2 1 2 

FPN 0 1 1 1 93 0 1 0 0 3 

AP 0 0 0 0 0 97 3 0 0 0 

AAP 1 2 2 0 0 5 88 0 2 0 

FVN 1 1 0 2 1 0 1 94 0 0 

VE 3 0 0 0 0 0 7 1 89 0 

P 0 0 0 0 2 0 0 0 0 98 

                  Classification rate= 92.80% 

We selected the best parameters values and structures representation of 

the classifiers above mentioned for complete the basic module unit with type-1 FIS 

and IT2FIS. The parameters values in the basic module unit 1 for the Fuzzy KNN 

algorithm is k= 4 neighbors, for the MLP-GDM with 150 hidden neurons and for the 

MLP-SCG with 50 hidden neurons. Finally, with the type-1 FIS and IT2FIS we 

combined the outputs of the classifiers and the classification rate in basic module 

unit 1 is 92.20%, see Table 4.4. In Table 4.5 are presented the results of IT2FIS 

with a 93.80%. We have the global classification rates of the methods in Figure 
4.6. 

 

Table 4.4  Results for cross validation of type-1 FIS, combining the outputs of the three 
classifiers in basic module unit 1 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 99 0 0 0 0 0 0 1 0 0 

LBB 0 91 0 0 1 1 2 3 2 0 

RBB 0 2 96 0 1 0 1 0 0 0 

PVC 0 4 0 86 3 0 3 1 0 3 

FPN 0 0 2 1 92 0 1 2 0 2 

AP 0 0 0 0 0 94 6 0 0 0 

AAP 0 4 0 0 0 6 84 1 5 0 

FVN 1 2 0 1 1 1 0 94 0 0 

VE 0 0 0 0 0 0 4 0 96 0 

P 0 0 0 0 3 0 0 0 0 97 

 Classification rate= 92.9% 
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Table 4.5 Results for cross validation of IT2FIS, combining the outputs of the three classifiers 
in basic module unit 1 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 99 0 0 0 0 0 0 1 0 0 

LBB 0 94 0 0 0 1 1 2 2 0 

RBB 0 2 96 0 1 0 1 0 0 0 

PVC 0 4 0 86 3 0 2 2 0 3 

FPN 0 0 2 1 91 0 1 2 0 3 

AP 0 0 0 0 0 95 5 0 0 0 

AAP 0 3 0 0 0 5 87 1 4 0 

FVN 0 1 0 1 1 0 1 96 0 0 

VE 0 0 0 0 0 0 4 0 96 0 

P 0 0 0 0 2 0 0 0 0 98 

Classification rate= 93.8% 

 

 

 

 

 

 

 

 

 

4.1.9.2 Results for the basic module unit 2 

In this part of this section, we show the results of the basic module unit 2. In 

the results for the first classifier into basic module unit 2 we found out that the best 

result used with k=3 nearest neighbors with 89.10% of classification rate, see 

confusion matrix in Table 4.6. For the second classifier, MLP-GDM with 150 hidden 

neurons, we obtained 76.10% of classification rate, see Table 4.7, and for the third 

classifier MLP-SCG, we found out that best result is with 50 hidden neurons with 

 

Figure 4.6 Classification rate of basic module unit 1 using 
MIT-BIH arrhythmia database’s MLII electrode signal 
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an 91.20% of classification rate, see details in Table 4.8. The results for the type-1 
FIS and ITSFIS are shown in Table 4.9 and Table 4.10 respectively. 

Table 4.6 Results for cross validation of fuzzy KNN algorithm, k=3, first classifier in basic 
module unit 2 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 91 0 1 0 0 1 6 0 1 0 

LBB 0 93 0 2 1 0 0 3 1 0 

RBB 0 0 99 0 0 0 0 0 1 0 

PVC 2 9 1 67 3 8 5 2 3 0 

FPN 0 1 0 0 97 0 1 0 0 1 

AP 6 0 0 2 0 87 3 1 1 0 

AAP 6 0 0 2 2 4 86 0 0 0 

FVN 2 13 1 3 2 2 0 77 0 0 

VE 1 1 1 0 0 0 0 0 95 2 

P 0 0 0 0 1 0 0 0 0 99 

Classification rate= 89.10% 

Table 4.7 Results for cross validation of MLP-GDM, 150 hidden neurons, second classifier in 
basic module unit 2 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 72 0 0 0 0 23 0 0 5 0 

LBB 0 90 3 0 7 0 0 0 0 0 

RBB 2 0 97 0 0 0 0 0 1 0 

PVC 6 41 1 18 2 14 6 5 7 0 

FPN 0 0 0 1 97 0 0 0 0 2 

AP 10 0 0 0 0 89 1 0 0 0 

AAP 15 1 10 0 12 14 46 0 2 0 

FVN 0 25 1 0 5 11 3 55 0 0 

VE 0 0 2 0 0 0 1 0 97 0 

P 0 0 0 0 0 0 0 0 0 100 

Classification rate= 76.10% 

Table 4.8 Results for cross validation of MLP-SCG 50 hidden neurons, third classifier in basic 
module unit 2 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 89 0 1 1 0 3 4 0 2 0 

LBB 0 99 0 0 0 0 0 1 0 0 

RBB 0 0 98 0 0 0 1 0 1 0 

PVC 0 4 2 70 0 6 9 4 5 0 

FPN 0 1 0 1 95 0 0 1 0 2 

AP 3 1 0 0 0 95 1 0 0 0 

AAP 0 0 0 3 2 5 90 0 0 0 

FVN 0 1 1 2 1 2 1 92 0 0 

VE 0 1 1 0 0 0 0 0 97 1 
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P 0 0 0 0 2 0 0 1 10 87 

Classification rate= 91.20% 

We selected the best parameters values and structures representation of 

the classifiers mentioned above for complete the basic module unit with type-1 FIS 

and IT2FIS. The parameters values in the basic module unit 2 for the Fuzzy KNN 

algorithm is k= 3 neighbors, for the MLP-GDM with 150 hidden neurons and for the 

MLP-SCG with 50 hidden neurons. Finally, with the type-1 FIS and IT2FIS we 

combined the outputs of the classifiers and the classification rate of the basic 

module unit 2 is of 92.40%, see Table 4.9. In Table 4.10 are presented the results 

of IT2FIS with a 92.70%. We have the global classification rates of the methods in 

Figure 4.7. 

Table 4.9 Results for cross validation of type-1 FIS, combining the outputs of the three 

classifiers in   basic module unit 2 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 96 0 0 1 0 1 2 0 0 0 

LBB 0 94 1 1 1 0 0 3 0 0 

RBB 0 0 99 0 0 0 0 0 1 0 

PVC 1 6 1 73 2 4 5 3 5 0 

FPN 0 1 0 1 96 0 0 1 0 1 

AP 4 0 0 0 0 96 0 0 0 0 

AAP 2 0 0 4 2 3 88 0 1 0 

FVN 1 2 1 4 1 1 0 90 0 0 

VE 1 1 1 0 0 0 0 0 95 2 

P 0 0 0 0 3 0 0 0 0 97 

Classification rate= 92.40% 

Table 4.10 Results for cross validation of IT2FIS, combining the outputs of the three 
classifiers in basic module unit 2 

Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 96 0 1 0 0 1 2 0 0 0 

LBB 0 95 0 2 1 0 0 1 1 0 

RBB 0 0 99 0 0 0 0 0 1 0 

PVC 1 6 1 72 2 7 4 2 5 0 

FPN 0 1 0 1 97 0 0 0 0 1 

AP 3 0 0 0 0 96 0 0 1 0 

AAP 4 0 0 2 2 5 87 0 0 0 

FVN 1 2 1 2 1 2 1 90 0 0 

VE 1 1 1 0 0 0 0 0 95 2 

P 0 0 0 0 0 0 0 0 0 100 
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Classification rate= 92.7% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.9.3 Results for the hybrid model. 

Finally, the confusion matrix of the results of the hybrid model using type-1 

FIS are presented in Table 4.11, we presented a brief summary results of the 
complete proposed hybrid model in this work in Table 4.12. 

 

        Table 4.11 Results for 10-cross validation of hybrid model using type-1 FIS 
Class N LBB RBB PVC FPN AP AAP FVN VE P 

N 97 0 0 0 0 0 2 1 0 0 

LBB 0 95 0 0 0 0 1 2 2 0 

RBB 0 2 97 0 0 0 1 0 0 0 

PVC 0 5 1 84 0 2 4 2 1 1 

FPN 0 1 0 0 97 0 0 2 0 0 

AP 1 0 0 0 0 92 7 0 0 0 

AAP 1 3 0 1 0 1 91 1 2 0 

FVN 2 3 1 0 0 0 0 94 0 0 

VE 1 0 1 0 0 0 2 0 95 1 

P 0 0 0 0 4 0 0 0 0 96 

 
  Classification rate= 93.8% 
 
 
 
 

 

 

Figure 4.7 Classification rate of basic module unit 2 
using MIT-BIH arrhythmia database’s (v1, v2 or v3) 

electrode signal 
 



        50 
 

Table 4.12 Results for 10-cross validation of complete hybrid model 
  

FKNN 

 

MLP1 

Unit 1 

MLP2 

 

type-1 
FIS 

 

IT2FIS 

 

FKNN 

 

MLP1 

Unit 2 

MLP2 

 

type-1 
FIS 

 

IT2FIS 

Hybrid 

type-1 
FIS  

 

Model 

IT2FIS 

A 

 

IT2FIS 

B 

Classification 
rate= 

90.3 83.90 92.80 92.90 93.80 89.10 76.10 91.20 92.40 92.70 93.80  94.20    94.30 

              

IT2FIS A= type-1 FIS from Unit1 + type-1 FIS from Unit2. 
IT2FIS B= IT2FIS from Unit1 + ITFIS from Unit2. 

4.1.9.4 Statistical Analysis 

In this section, we are presenting a comparison of results for the statistical 

analysis between type-1 FIS and IT2FIS for the basic module unit 1. Both Fuzzy 

Systems were used to combine the outputs of the three classifiers. These results 

were obtained by a 10-cross validation process and reflected in the classification 

rate for the basic module unit 1. In Table 4.13, the results of the hypothesis testing 
are presented and illustrated in Figure 4.8. 

 

 

4.1.9.5 Comparison with other works 

We presented brief results comparison between proposed hybrid model and 
some other works, in literature, see Table 4.14. 

 

 

Figure 4.8 Hypothesis testing of type-1 FIS and IT2FIS for basic 
d l  i  1 

Table 4.13 Results for Hypothesis Testing of type-1 FIS and 
IT2FIS for basic module unit 1 
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            Table 4.14 Results comparison between proposed hybrid model  
            and other works 

Work Classifier Effectiveness 

Ceylan, R., et. al. Type-2 fuzzy clustering neural network 99% 

Amezcua, J., Melin, P. modular LVQ neural network 98.89% 

Hu et. al. Mixture of experts 94% 

Ince et. al. MDPSO 95.58% 

Martis et. al. SVM-RBF 93.48% 

De Chazal et al. Weighted LD 83% 

Soria and Martinez Weighted LD 90% 

Llamedo and Martinez Weighted LD 93% 

Ye et al. SVM 86.4% 

Lin and Yang Weighted LD 93% 

Zhang and Luo Combined  SVM 87% 

Proposed Hybrid Model Fuzzy logic and neural networks 94.30% 

 
4.1.9.6 Optimization of the type-1 Fuzzy Inference Systems in proposed 
Hybrid Model 

We have optimized the type-1 Fuzzy Inference Systems in the proposed 

hybrid model used Bee Colony Optimization algorithm. We found a structure for the 

type-1 FIS that gave us better results. As we can observe, the classification rate for 

the basic module unit 1 increased from 92.90 to 93.20 and 92.40 to 93. With 

respect to the combination of both basic module units in the hybrid model, we also 

achieved an increase in the global classification rate from 93.80 to 95.80 using 

type-1 fuzzy logic. In Table 4.15, we present the optimization results of the type-1 

FIS. Figure 4.9 shows the membership functions that corresponding to the 
optimized type-1 FIS for the basic module units. 

Table 4.15 Optimization results for the type-1 FIS in hybrid model used BCO 
 Unit 1 

type-1 
FIS 

 

type-1 
FIS+ 
BCO 

Unit 2 

type-1 
FIS 

 

type-1 
FIS+ 
BCO 

Hybrid 

type-1 
FIS  

 

Model 

type-1 
FIS+BCO 

 

Classification 
rate= 

92.90 93.20 92.40 93 93.80  95.80    
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Figure 4.9   Memberships functions for inputs and outputs 
of the optimized type-1 FIS for the basic module units in 

hybrid model 
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4.1.10 Discussions of results 

In the results presented with respect to the performed experiments, we 

conclude that we have obtained a good classification rate with the classifiers in the 

two basic module units, and even more combining their outputs using fuzzy logic, 

we have obtained even better results; in this part of the hybrid system, we used 

two options to combine the results of the classifiers in the basic module units and 

we have presented a comparison between type-1 FIS and IT2FIS with hypothesis 

testing. We obtained the best results using an IT2FIS with a 93.80% against 

92.90% of classification rate for the type-1 FIS in basic module unit 1. We 

improved the classification rate in basic module unit achieving a 93.80% with 10-

fold cross validation using a type-2 fuzzy system. In the comparison using 

hypothesis testing, although the current results do not provide sufficient statistical 

evidence to reject the null hypothesis, we find out that using type-2 fuzzy logic, we 

can achieve better results, and we can still improve the interval type-2 fuzzy 

system with optimization methods. Referring to the basic module unit 2, we 

obtained 92.40% of classification rate used type-1 FIS combining the results of the 

classifiers above mentioned, and 92.70% of classification rate used type-2 fuzzy 
system. 

We used two basic module units in the hybrid model, where each one was 

trained with electrode signals of the MIT-BIH arrhythmia database and we 

combined the output results of the two basic module units using a type-1 FIS, the 

results show the improvement of the global classification rate in the hybrid model to 

achieve a 93.80%. We found out that some samples of heartbeats were 

misclassified by one basic module unit. However, when combining the outputs with 

2-lead using two basic module units some samples with misclassification were 

fixed and classified correctly by the other basic module unit using a fuzzy system, 

and in this form, we have obtained better performance and classification rate using 
a hybrid model to resolve cardiac arrhythmia classification problem.  

Based on the obtained results, we found out that IT2FIS from Unit 1 

achievement obtain the same classification rate than the global hybrid model used 
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type-1 FIS, but also we have included an IT2FIS to use in the global hybrid model. 

Therefore, we can show that global IT2FIS provided higher accuracy with 94.20% 

combining type-1 FIS from Unit1 and type-1 from Unit2) and 94.30% combining 

IT2FIS from Unit1 and IT2FIS from Unit2 than global type-1 FIS 93.80% of 

classification rate. In other words, implementing type-2 instead type-1 fuzzy logic 
improves overall accuracy of the proposed hybrid model.  

Some advantages about the proposed hybrid model are that we can 

combine several computational intelligence methods using fuzzy systems to 

increase the overall accuracy of the hybrid model. We can separate into basic 

module units of expert modules for the electrode signal or lead of an ECG to 

consider the different perspectives that offers each lead and helps the classification 

of cardiac arrhythmias. One disadvantage that we can mention with respect to the 

proposed hybrid model relates to the total number of fuzzy if-then rules for the 

fuzzy systems, and for this reason is necessary to optimize, for example, with 

genetic algorithms or other technique in order to reduce the total of fuzzy if-then 

rules in the fuzzy systems. 

We will work to extend the hybrid system to use multi-lead arrhythmia 

classification using other databases that contain 12 leads to be able to make a 
complete medical diagnosis. 

4.2 12-lead cardiac arrhythmia classification 
 

The conventional 12-lead ECG used 10 electrodes simply by comparing 

electrical potentials formed the leads such as i, ii, iii, avf, avr, avl, v1, v2, v3, v4, v5, 

and v6. 

 The PTB Diagnostic ECG Database contains 549 ECG records from 290 

subjects, the subjects aged 17 to 87 years old. One to five ECG records represent 

each subject. Each ECG record includes 15 measured signals, the conventional 12 

leads: i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6, and three Frank lead such as vx, 

vy and vz. The diagnosis classes included in the database are Myocardial 

Infarction, Cardiomyopathy, Bundle Branch Block, Dysrhythmia, Myocardial 
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Hypertrophy, Valvular Heart Disease, Myocarditis, Miscellaneous, and Healthy 
Controls. 

This work is related to cardiac arrhythmia classification using the 

Physikalisch-Technische Bundesanstalt (PTB) Diagnostic ECG database [3, 13] 

achieved through the hybridization of two computational intelligence techniques 

such as fuzzy logic and artificial neural networks. The purpose is to design a hybrid 

intelligent system to be able combine different computational intelligence 

techniques considering the conventional 12 leads from the electrode signals of a 

complete electrocardiogram to classify cardiac arrhythmias to support a complete 

medical diagnosis.  

4.2.1 Hybrid model based on neural networks, type-1 and type-2 fuzzy 
systems for 12-lead cardiac arrhythmia classification 
 

We extracted different samples of electrocardiograms from the PTB 

Diagnostic ECG database. The selected samples of electrocardiograms were 

preprocessing used autoregressive model coefficients, Shannon entropy and 

multifractal wavelets to create the feature vectors that represent each sample of 

electrocardiogram. The feature vectors are the inputs for the expert modules of the 

proposed hybrid intelligent system. The classes that were included in the PTB 

Diagnostic ECG database are Myocardial Infarction, Cardiomyopathy, Bundle 

Branch Block, Dysrhythmia, Myocardial Hypertrophy, Valvular Heart Disease, 

Myocarditis, Miscellaneous and Healthy Controls. In Figure 4.10, 4.11, and 4.12, 

some examples of different diagnostic classes of the PTB Diagnostic ECG 

database are presented.  

We selected 280 electrocardiograms of different patients. We are working 

on 9 classes: Myocardial infarction, Cardiomyopathy, Bundle branch block, 

Dysrhythmia, Myocardial hypertrophy, Valvular heart disease, Myocarditis, 

Miscellaneous and Healthy controls, 466 samples segments of electrocardiograms. 

The hybrid intelligent system learns the 9 classes using samples of each class. We 

used 70% for training and 30% for testing. 
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Figure 4.10 Examples of the classes Myocardial Infaction and Miocarditis respectively, in the PTB Diagnosis 
ECG database 
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Figure 4.11 Examples of the classes Myocardial hypertrophy and Cardiomyopathy respectively, in the PTB 
Diagnostic ECG database 

 

 



        58 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.12 Examples of the classes Dysrhythmia and Healthy controls respectively, in the PTB Diagnostic 
ECG database 
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In this work, we used the conventional twelve leads: i, ii, iii, avr, avl, avf, v1, 

v2, v3, v4, v5 and v6 included in the electrocardiograms of the PTB Diagnostic 

ECG database, in Figure 4.13, 4.14 and 4.15, we show some examples of the 

conventional leads. The electrocardiograms used for the classes were belonging of 

the patients 1 to 103, 108, 111, 120, 128, 138 to 142, 145, 148, 149, 152, 158, 

163, 183, 193, 195, 197, 207, 211, 223, 226, 230, 231, 259, 261, 265, 268, 270, 

273, 274, 280, 282, 283, 287, 290 to 294 for Myocardial infarction. For the class of 

Cardiomyopathy 127, 129, 136, 201, 215, 222, 232, 253, 254, 256, 257, 262, 288 

and 289. For the class of Bundle branch block 171, 175, 199, 202, 203, 204, 206, 

208, 209, 213, 217, 219, 220, 225 and 228. For the class of Dysrhythmia 109, 112, 

113, 133, 147, 151, 157, 168, 177, 187, 218, 258 and 286. For the class of 

Hypertrophy 159, 210, 212, 216, 221 and 227. For the class of Valvular heart 

disease 106, 107, 110, 114, 188 and 224. For the class of Myocarditis 249, 269, 

271 and 272. For the class of Miscellaneous 119, 125, 126, 130, 136, 143, 144, 

146, 153, 154, 162, 164, 176, 178, 179, 181, 186, 190, 191, 192, 194, 196, 200, 

275, 278, 281 and 285. Finally, the records of the patients 104, 105, 116, 117, 121, 

122, 131, 155, 156, 165, 166, 169 to 174, 180, 182, 184, 185, 198, 214, 229, 233 

to 248, 251, 252, 255, 260, 263, 264, 266, 267, 276, 277, 279, 284 for healthy 

controls, in some cases more than one electrocardiogram of the same patient was 
used available in the PTB diagnosis ECG database. 
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Figure 4.13 The conventional leads i, ii, iii in electrocardiograms of the PTB 
Diagnostic database 

 

 

 

 

Figure 4.14 The conventional leads avf, avr, avl in electrocardiograms of the PTB Diagnostic database 
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The hybrid intelligent system is composed of twelve expert modules, where 

each module is related to an electrode signal or lead in the electrocardiogram 

being 12 Leads cardiac arrhythmia classification solution. We used an interval 

type-1 and interval type-2 fuzzy inference system to determine the global 

classification for the hybrid intelligent system using the twelve expert modules. In 

Figure 4.16, we are presented the architecture of the hybrid intelligent system. 

In the preprocessing phase, we applied a feature extraction process in order 

to reduce or simply the information of the selected samples of the 

electrocardiograms as well as for the classifiers captures the differences between 

the classes to improve the classification rate. We created a set of vectors that 

represent a complete signal or lead in the electrocardiogram; in other words, each 

electrocardiogram has its twelve feature vectors to be learning for the expert 

modules in the proposed hybrid intelligent system. The feature vectors are built 
with autoregressive models, Shannon entropies, and wavelets.  

 

 

 

 

Figure 4.15 The conventional leads v4, v5, v6 in electrocardiograms of the PTB Diagnostic database 
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We combined the output results of the twelve expert modules with the type-1 

and interval type-2 fuzzy inference systems. The type-1 and interval type-2 fuzzy 

inference system has the follow structure: Mamdani type, 108 inputs, and 9 

outputs; the first 9 inputs belong for the expert module of the i lead, the second 9 

inputs corresponding for the expert module of the ii lead, the third 9 inputs for the 

expert module of iii lead, and so on until the expert module v6 lead. The outputs 

corresponding to the classes learned for the Fuzzy Inference System. We used 

trapezoid functions for the inputs and outputs. The fuzzy variables Low, Medium, 

and High were used in each input and output. Centroid method is used as 

defuzzification method. The fuzzy rules represent the basic knowledge specific 

class. We show type-1 and interval type-2 fuzzy inference systems in Figure 4.17. 
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Figure 4.16 Hybrid Intelligent System for 12-leads arrhythmia classification 

 

 

Figure 4.17 type-1 and interval type-2 fuzzy inference system 
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We present the parameters used for inputs and outputs for type-1 fuzzy inference 

system, see equation 4.8, 4.9 and 4.10. In equation 4.11, 4.12 and 4.13 for interval type-2 
fuzzy inference system: 

 

𝜇𝐿𝐿𝐿(𝑥) =

⎩
⎪
⎨

⎪
⎧

0, 𝑥 ≤ −1.218
𝑥+1.218 
0.112

, −1.218 ≤ 𝑥 ≤ −1.106
1, −1.106 ≤ 𝑥 ≤ −0.6361

−0.6361−𝑥
0.112

, −0.6361 ≤ 𝑥 ≤ −0.3787
0 −0.3787 ≤ 𝑥

                          (4.8) 

𝜇𝑀𝑀𝑀𝑀𝑀𝑀(𝑥) =

⎩
⎪
⎨

⎪
⎧

0, 𝑥 ≤ −0.3742
𝑥+−0.3742
0.30012

, −0.3742 ≤ 𝑥 ≤ −0.07408
1, −0.07408 ≤ 𝑥 ≤ 0.1374

0.4814−𝑥
0.1149

, 0.1374 ≤ 𝑥 ≤ 0.4814
0 0.4814 ≤ 𝑥

                (4.9) 

𝜇𝐻𝐻𝐻ℎ(𝑥) =

⎩
⎪
⎨

⎪
⎧

0, 𝑥 ≤ 0.4725
𝑥−0.4725
0.2307

, 0.4725 ≤ 𝑥 ≤ 0.7032
1, 0.7032 ≤ 𝑥 ≤ 1.149

1.252−𝑥
0.2307

, 1.149 ≤ 𝑥 ≤ 1.252
0 1.252 ≤ 𝑥

                             (4.10) 

µLow(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧ 0, x≤-0.36
x+0.36
0.32

, -0.36≤x≤-0.04

1, -0.04≤x≤0.04
0.04-x
0.32

, 0.04≤x≤0.36
0, 0.36≤x

                 (4.11) 

 

µMedium(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧

0, x≤0.14
x-0.14
0.32

, 0.14≤x≤0.46
1, 0.46≤x≤0.54

0.86-x
0.32

, 0.54≤x≤0.86
0, 0.86≤x

                 (4.12) 
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µHigh(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧

0, x≤0.64
x-0.64
0.32

, 0.64≤x≤0.96
1, 0.96≤x≤1.04

1.36-x
0.32

, 1.04≤x≤1.36
0, 1.36≤x

                    (4.13) 

 

We have 224 fuzzy rules in type-1 and interval type-2 fuzzy inference 

systems of which represent a set of basic rules for combining from expert module 

responses considering the specific class and the ECG regions of the heart are 

presented in Table 4.16. 

Table 4.16  Fuzzy rules of type-1 and interval type-2 Fuzz Inference Systems based on ECG 
regions of the heart 

Leads ECG Regions Fuzzy Rules 

ii, iii, avr Inferior 21 

i, avl High Lateral 9 

v5, v6 Low Lateral 9 

i, avl, v5, v6 Free Wall 31 

v1, v2 Middle Septal 9 

v3, v4 Inferior Septal 9 

v1 to v4 Antero septal 31 

v1 to v6 Anterior Extension 105 

 

The 21 basic fuzzy rules for inferior ECG region of the heart used ii, iii and 

avr leads are listed as follows: 

1.- IF (MI_ii IS High) AND (MI_iii IS High) AND (MI_avr IS High) THEN (MI IS 
High). 

2.- IF (MI_ii IS Low) AND (MI_iii IS Medium) AND (MI_avr IS Low) THEN (MI IS 
Low). 

3.- IF (MI_ii IS Low) AND (MI_iii IS Medium) AND (MI_avr IS Low) THEN (MI IS 
Low). 

4.- IF (MI_ii IS Medium) AND (MI_iii IS Low) AND (MI_avr IS Low) THEN (MI IS 
Low). 
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5.- IF (MI_ii IS Low) AND (MI_iii IS Low) AND (MI_avr IS High) THEN (MI IS Low). 

6.- IF (MI_ii IS Low) AND (MI_iii IS High) AND (MI_avr IS Low) THEN (MI IS Low). 

7.- IF (MI_ii IS High) AND (MI_iii IS Low) AND (MI_avr IS Low) THEN (MI IS Low). 

8.- IF (MI_ii IS Medium) AND (MI_iii IS Medium) AND (MI_avr IS Medium) THEN 
(MI IS Medium). 

9.- IF (MI_ii IS Medium) AND (MI_iii IS Medium) AND (MI_avr IS Low) THEN (MI 
IS Medium). 

10.-IF (MI_ii IS Medium) AND (MI_iii IS Low) AND (MI_avr IS Medium) THEN (MI 
IS Medium). 

11.-IF (MI_ii IS Low) AND (MI_iii IS Low) AND (MI_avr IS Medium) THEN (MI IS 

Medium). 

12.-IF (MI_ii IS Medium) AND (MI_iii IS Medium) AND (MI_avr IS High) THEN (MI 
IS Medium). 

13.-IF (MI_ii IS Medium) AND (MI_iii IS High) AND (MI_avr IS Medium) THEN (MI 
IS Medium). 

14.-IF (MI_ii IS High) AND (MI_iii IS Medium) AND (MI_avr IS Medium) THEN (MI 
IS Medium). 

15.-IF (MI_ii IS High) AND (MI_iii IS High) AND (MI_avr IS High) THEN (MI IS 
high). 

16.-IF (MI_ii IS High) AND (MI_iii IS High) AND (MI_avr IS Low) THEN (MI IS 
High). 

17.-IF (MI_ii IS High) AND (MI_iii IS Low) AND (MI_avr IS High) THEN (MI IS 

High). 

18.-IF (MI_ii IS Low) AND (MI_iii IS High) AND (MI_avr IS High) THEN (MI IS 

High). 
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19.-IF (MI_ii IS High) AND (MI_iii IS High) AND (MI_avr IS Medium) THEN (MI IS 
High). 

20.-IF (MI_ii IS High) AND (MI_iii IS Medium) AND (MI_avr IS High) THEN (MI IS 

High). 

21.-IF (MI_ii IS Medium) AND (MI_iii IS High) AND (MI_avr IS High) THEN (MI IS 
High). 

In the following part of this section, we describe a brief summary with some 

important concepts referent of the techniques used in this proposed work. 
 

4.2.2 Experiments 
 

We performed experiments used randomly 70% of the selected 

electrocardiograms to train the expert modules in proposed hybrid intelligent 

system and the rest 30% for testing. We have trained classifiers based on the 

Fuzzy KNN algorithm and MLP-SCG to select the better that represent each expert 

module by lead or electrode signal from electrocardiogram. The parameters for 

Fuzzy KNN algorithm were used k=3 to 35 nearest neighbor. The structure for the 

MLP-SCG’s were 50, 100, 150 to 850 hidden neurons, 190 input neurons, 9 output 

neurons, 10000 epochs, learning rate 0.001. Where the output neurons are the 

classes used to train the hybrid intelligent system such as Myocardial Infarction, 

Cardiomyopathy, Bundle Branch Block, Dysrhythmia, Myocardial Hypertrophy, 

Valvular Heart Disease, Myocarditis, Miscellaneous and Healthy Controls. We 

selected the better-trained classifier in order to form the expert module 

representation in hybrid intelligent system. The outputs of the selected expert 

modules were combining using a type-1 and interval type-2 Fuzzy Inference 

System to determine the global classification of the proposed hybrid intelligent 

system. The rules of Fuzzy Inference Systems are based on ECG regions such as 

inferior, high Lateral, low lateral, free wall, middle septal, inferoseptal, anteroseptal, 
anterior extension. 
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4.2.3 Results 

In this part, we present the results for the expert modules separately and the 

global results for the hybrid model proposed. In the last part of this section, we are 
present a statistical analysis to compare the results of the fuzzy systems.   

4.2.3.1 Expert Modules. Classifiers: Fuzzy KNN algorithm and MLP-SCG. 

Firstly, we present the results for the classifiers used to form the expert 

modules in hybrid intelligent system. The results of the classifiers Fuzzy KNN 

algorithm are shown in Table 4.17 and 4.18, MLP-SCG above mentioned in the 

experiments section are show in Table 4.19, 4.20, 4.21. We can observe the better 

results represented for each lead, which were selected to form part of the expert 
modules in the proposed hybrid intelligent system.  

        For the Fuzzy KNN algorithm, the best results for 12 leads were used k=3, 4 

and 5 nearest neighbors. In Figure 4.18 and 4.19 are presented the comparative 
results of classification rate per each lead used Fuzzy KNN algorithm. 

 

Table 4.17 Results for testing of Fuzzy KNN algorithm 
Lead K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=11 K=12 K=13 K=14 K=15 K=16 K=17 K=18 

i 92.14 90.71 90.71 89.28 89.28 89.28 89.28 89.28 89.28 89.28 89.28 89.28 89.28 89.28 89.28 89.28 

ii 84.28 85 85.71 56.42 56.42 56.42 56.42 56.42 56.42 56.42 56.42 55.71 55.71 55.71 55.71 55.71 

iii 82.14 82.85 82.85 70 70 70 70 70 69.28 70 70 70 69.28 69.28 69.28 69.28 

avf 82.14 82.85 80.70 52.85 54.28 53.57 50.71 50 50 49.28 49.28 49.28 49.28 49.28 49.28 49.28 

avr 85.71 85.71 85 69.28 69.28 68.57 68.57 68.57 67.14 67.14 66.42 67.85 67.85 67.85 67.85 67.85 

avl 87.14 88.57 87.14 86.42 86.42 86.42 85.71 85.71 85.71 85.71 85.71 85.71 85.71 85.71 85.71 85.71 

v1 87.85 86.42 85.71 70.71 71.42 70.71 71.42 71.42 70.71 70.71 70.71 70.71 70.71 70.71 70.71 70 

v2 91.42 90.71 90.71 82.85 81.42 8.71 80.71 80.71 80.71 81.42 81.42 81.42 81.42 80.71 80.71 80.71 

v3 92.85 92.85 92.85 57.85 58.57 58.57 58.57 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 

v4 94.28 94.28 93.57 75.71 75.71 75 74.28 74.28 74.28 74.28 74.28 74.28 74.28 74.28 74.28 74.28 

v5 94.28 94.28 94.28 85 85.71 85.71 85.71 85.71 85.71 85.71 85 85 84.28 84.28 84.28 84.28 

v6 93.57 93.57 92.85 83.57 83.57 84.28 83.57 82.85 82.85 82.85 82.85 82.85 83.57 83.57 83.57 83.57 
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Table 4.18 Results for testing of Fuzzy KNN algorithm 
Lead K=19 K=20 K=21 

K=22 K=23 K=24 K=25 K=26 K=27 K=28 K=29 K=30 K=31 K=32 K=33 K=34 K=35 

i 89.28 89.28 89.28 89.28 89.28 88.57 87.85 87.85 87.85 88.57 87.85 87.14 87.14 87.14 87.14 87.14 87.85 

ii 55.71 55.71 55.71 55 55 55 55 55 55 55 55 84.28 55 55 55 55 55 

iii 69.28 69.28 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 

avf 48.57 49.28 49.28 49.28 49.28 48.57 48.57 49.28 49.28 49.28 49.28 49.28 49.28 50 50 50 50 

avr 67.85 68.57 68.57 68.57 68.57 68.57 69.28 69.28 70 70 70.71 70.71 70.71 70.71 70.71 70.71 70.71 

avl 85.71 85 85 85 85 85 85 85 85 85 85 84.28 84.28 83.57 83.57 83.57 83.57 

v1 70 70 70 70 70 70 69.28 69.28 69.28 69.28 69.28 70.71 70.71 70.71 70.71 70.71 70.71 

v2 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 80.71 

v3 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 

v4 74.28 74.28 75 75 75 75 74.28 74.28 74.28 74.28 74.28 74.28 74.28 73.57 73.57 73.57 73.57 

v5 83.57 84.28 84.28 85 84.28 84.28 84.28 84.28 84.28 84.28 84.28 84.28 84.28 84.28 84.28 84.28 84.28 

v6 83.57 83.57 83.57 83.57 83.57 83.57 83.57 83.57 83.57 83.57 84.28 84.28 84.28 84.28 84.28 84.28 84.28 

 

 

 

Figure 4.18 Comparative results of different values of k for Fuzzy KNN 
algorithm classifier for specific lead (i, ii, iii, avf, avr, avl) 
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We perform different architectures for the MLP-SCG varying the hidden 

neurons and the count of hidden layers, and the results tending to improve with 

these specifications.  In Table 4.19, 4.20 and 4.21, we can observe the results of 

the experiments to perform for the 12 leads used from 50 to 850 hidden neurons 

and 1 to 3 hidden layers respectively. In Figure 4.20 and 4.21 presented the 

comparative results of different values of hidden neurons and layers for MLP-SCG 
classifier for specific lead. 

Table 4.19  Results for testing of MLP-SCG 

Lea
d 

50 neurons 100 neurons 150 neurons 200 neurons 250 neurons 300 neurons 

1L 2L 3L 1L 2L 3L 1L 2L 3L 1L 2L 3L 1L 2L 3L 1L 2L 3L 

i 55.71 60 9.28 70.71 81.42 80.71 72.14 82.14 69.28 77.85 84.28 88.57 85.71 85.71 85.71 82.85 86.42 86.42 

ii 45 60.71 44.28 56.42 79.28 60.71 72.14 75.71 79.28 82.85 81.42 81.42 81.42 85 76.42 77.85 84.28 84.28 

iii 55 64.28 52.85 67.85 74.28 61.42 75.71 69.28 77.85 80.71 85.71 85 80.71 87.85 84.28 85.71 85.71 87.85 

avf 51.42 45 31.42 63.57 65 67.14 70 72.14 68.57 77.14 80.71 85.71 73.57 77.85 80.71 81.14 79.28 80 

avr 67.85 62.85 13.57 80.71 78.57 77.85 68.57 84.28 83.57 84.28 85.71 85.71 85 86.42 85.71 86.42 85.71 86.42 

 

 

Figure 4.19 Comparative results of different values of k for Fuzzy KNN 
algorithm classifier for specific lead (v1, v2, v3, v4, v5, v6) 
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avl 61.42 55.71 30 73.57 67.85 64.28 82.14 76.42 78.57 80.71 85.71 73.53 80.71 84.28 82.85 73.57 86.42 82.14 

v1 63.57 53.57 55.71 75.71 77.14 70.71 73.57 79.28 70 86.42 90 83.57 85 89.28 87.85 86.42 90 88.57 

v2 58.57 50.71 42.85 76.42 67.85 39.28 71.42 77.85 70.71 76.48 85 78.57 85 85 78.85 84.28 87.14 82.85 

v3 64.28 52.85 35.71 63.57 59.28 58.57 81.42 86.42 83.57 77.14 85.71 83.57 87.14 88.57 66.42 84.28 91.42 88.57 

v4 55.71 49.28 46.42 75 71.42 72.14 79.28 79.28 71.42 78.57 82.85 85 75 87.85 80 77.14 88.57 90.71 

v5 63.57 12.85 57.14 75.71 82.14 77.85 74.28 83.57 85 71.42 87.14 77.85 90 87.85 85.71 82.85 88.57 87.14 

v6 81.42 62.85 63.57 74.28 80 13.57 86.42 83.57 90.71 92.14 87.85 79.28 90.71 90 90.71 75 90.71 88.57 

 

Table 4.20 Results for testing of MLP-SCG 

Lead 

350 neurons 400 neurons 450 neurons 500 neurons 550 neurons 600 neurons 

1L 2L 3L 1L 2L 3L 1L 2L 3L 1L 2L 3L 1L 2L 3L 1L 2L 3L 

i 85.71 88.57 88.57 84.28 87.85 88.57 87.85 87.85 90 89.28 87.85 87.14 90.71 87.85 85.71 87.85 88.57 88.57 

ii 84.28 82.85 84.28 84.28 85 82.85 76.42 84.28 86.42 77.85 82.14 84.28 82.85 83.57 83.57 85.71 85.71 83.57 

iii 85 87.14 86.42 78.57 87.85 87.14 85.71 87.14 88.57 85.71 89.28 87.85 87.14 89.28 90 84.28 87.85 88.57 

avf 72.14 82.85 85 78.57 86.42 83.57 79.28 82.85 83.57 77.85 88.57 84.28 80.71 81.42 85 85 85.71 84.28 

avr 85 87.14 86.42 86.42 87.14 87.14 83.57 88.57 87.14 82.85 87.14 88.57 85.71 87.14 87.14 85.71 87.14 86.42 

avl 79.28 87.14 85.71 82.14 88.57 89.28 86.42 88.57 88.57 85.71 88.57 86.42 79.28 85.71 87.85 84.28 86.42 87.14 

v1 88.57 90.71 89.28 88.57 87.85 83.57 87.85 90.71 86.42 84.28 91.42 87.85 90 90.71 87.85 87.85 87.85 92.14 

v2 90.71 87.14 86.42 81.42 88.57 90.71 85.71 85.71 88.57 90 90.71 86.42 90 90 90 90.71 90 91.42 

v3 88.57 91.42 92.85 91.42 90.71 92.14 86.42 92.14 91.42 90.71 92.14 91.42 88.57 91.42 91.42 87.14 92.14 92.14 

v4 88.57 89.28 86.42 87.14 84.28 90.71 82.14 82.85 92.14 80 92.14 92.14 82.85 92.14 91.42 92.14 93.57 91.42 

v5 85 87.85 88.57 85.71 90.71 87.14 88.57 86.42 87.85 87.14 90 89.28 87.14 88.57 86.42 87.85 87.14 87.85 

v6 82.14 92.85 92.85 85 92.14 92.85 83.57 93.57 92.14 87.14 92.14 92.85 90.71 92.14 92.85 92.85 92.14 95 

 

In Table 4.22, we can see the worst, best; standard deviation and average 

of 30 experiments for the 12-leads of the electrocardiograms included in PTB 

Diagnostic ECG database used MLP-SCG. In the performed experiments shown in 

lead i, we found the best result is used 550 hidden neurons and 1 hidden layer with 

90.71% of classification rate. For the lead ii, we found out the best result is used 

750 hidden neurons and 2 hidden layers obtained an 87.85% of classification rate. 

For the iii lead, we can see the best result is used 550 hidden neurons and 3 

hidden layers with 90% of classification rate. For avf, avr and avl leads the best 

results are used 500 hidden neurons and 2 hidden layers, 850 hidden neurons and 

2 hidden layers, 400 hidden neurons and 3 hidden layers with 88.57%, 89.28%, 

and 89.28% of classification rate respectively. For v1, v2 and v3 leads, we found 

out the best results obtained are used with 800 hidden neurons and 2 hidden 

layers, 850 hidden neurons and 3 hidden layers, 650 hidden neurons and 2 hidden 
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layers with a 92.85%, 93.57% and 92.85% of classification rate. For the v4, v5 and 

v6 leads, we found out the best results are used with 750 hidden neurons and 1 

hidden layer, 400 hidden neurons and 2 hidden layers, 600 hidden neurons and 3 

hidden layers with a 94.28%, 90.71% and 95% of classification rate respectively. 

The leads that obtained the highest percent of classification rate were v1, v2, v3, 

v4 and v6. The leads that registered the lowest percent of classification rate were 

ii, avf, and avl. 

Table 4.21  Results for testing of MLP-SCG 

Lead 

650 neurons 700 neurons 750 neurons 800 neurons 850 neurons 

1L 2L 3L 1L 2L 3L 1L 2L 3L 1L 2L 3L 1L 2L 3L 

I 89.28 87.14 87.85 86.42 88.57 90 87.85 85.71 87.14 87.14 87.85 88.57 87.14 87.14 87.85 

Ii 84.28 85 85.71 86.42 87.14 87.14 83.57 87.85 85.71 85 87.14 85 84.28 86.42 86.42 

  Iii 83.57 88.57 88.57 77.85 87.85 89.28 75.71 90 90 90 89.28 90 80 88.57 87.85 

Avf 80.71 87.14 82.14 82.85 85 85.71 82.14 85.71 85 81.42 85 83.57 82.85 86.42 87.14 

Avr 77.14 87.85 87.14 86.42 87.85 87.85 76.42 86.42 86.42 87.85 86.42 88.57 87.55 89.28 87.85 

Avl 87.85 87.14 87.14 80 87.14 86.42 78.57 86.42 86.42 86.42 87.85 87.85 85.71 87.14 87.85 

v1 87.85 91.42 90 75.71 91.42 87.85 74.28 91.42 90 90 92.85 89.28 92.14 90 90 

v2 88.57 90 88.57 89.28 90.71 90.71 80 90 92.14 90 90 90 91.42 90 93.57 

v3 89.28 92.85 92.14 90.71 92.85 91.42 91.42 90.71 92.14 90.71 91.42 92.14 88.57 92.85 92.14 

v4 72.85 92.14 92.14 92.85 93.57 92.14 94.28 90.71 91.42 81.42 92.14 93.57 90 92.85 94.28 

v5 81.42 90.71 90.71 89.28 90 90 88.57 90.71 88.57 89.28 89.28 89.28 89.28 89.28 89.28 

v6 92.14 92.14 93.57 90.57 92.85 92.85 91.42 92.85 92.85 93.57 91.42 91.42 93.57 93.57 92.85 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.20 Comparative results of different values of hidden neurons and 
layers for MLP-SCG classifier for specific lead (i, ii, iii, avf, avr, avl) 

 

90.71
87.1487.8585.71 88.57 86.42

0

10

20

30

40

50

60

70

80

90

100

35
0 

N
EU

-1
 L

35
0 

N
EU

-2
 L

35
0 

N
EU

-3
 L

40
0 

N
EU

-1
 L

40
0 

N
EU

-2
 L

40
0 

N
EU

-3
 L

45
0 

N
EU

-1
 L

45
0 

N
EU

-2
 L

45
0 

N
EU

-3
 L

50
0 

N
EU

-1
 L

50
0 

N
EU

-2
 L

50
0 

N
EU

-3
 L

55
0 

N
EU

-1
 L

55
0 

N
EU

-2
 L

55
0 

N
EU

-3
 L

60
0 

N
EU

-1
 L

60
0 

N
EU

-2
 L

60
0 

N
EU

-3
 L

65
0 

N
EU

-1
 L

65
0 

N
EU

-2
 L

65
0 

N
EU

-3
 L

70
0 

N
EU

-1
 L

70
0 

N
EU

-2
 L

70
0 

N
EU

-3
 L

75
0 

N
EU

-1
 L

75
0 

N
EU

-2
 L

75
0 

N
EU

-3
 L

80
0 

N
EU

-1
 L

80
0 

N
EU

-2
 L

80
0 

N
EU

-3
 L

85
0 

N
EU

-1
 L

85
0 

N
EU

-2
 L

85
0 

N
EU

-3
 L

%
 o

f c
la

ss
ifi

ca
tio

n 
ra

te

MLP-SCG (i,ii,ii,avf,avr,avl) 

i

ii

iii

avf

avl

avr



        72 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.22 Results for testing of the 33 experiments used by the Fuzzy KNN algorithm and 
MLP-SCG 

Lead Classifier Worst Best Std. Dev. Average 

i 
Fuzzy KNN 87.14 92.14 1.129662393  88.8693939 

MLP-SCG 85.71 90.71 1.330938949  87.8312121 

ii 
Fuzzy KNN 55 85.71 9.706412165  59.1306060 

MLP-SCG 84.28 87.85 2.376372012  84.4542424 

iii 
Fuzzy KNN 69.28 82.85 3.744379905  70.9939393 

MLP-SCG 85 90 3.6937905  86.6848484 

avf 
Fuzzy KNN 48.57 82.85 9.455843472  52.7448484 

MLP-SCG 72.14 88.57 3.213136065  83.3293939 

avr 
Fuzzy KNN 66.42 85.71 4.971103335  70.4506060 

MLP-SCG 85 89.28 2.781743036  86.2845454 

avl 
Fuzzy KNN 83.57 88.57 1.086579112  85.3866666 

MLP-SCG 79.28 89.28 2.866876963  85.9690909 

v1 
Fuzzy KNN 69.28 87.85 4.800434403  71.8572727 

MLP-SCG 88.57 92.85 4.047687705  88.4151515 

v2 
Fuzzy KNN 80.71 91.42 2.966763267  81.8130303 

MLP-SCG 90.71 93.57 2.786976204  89.0663636 

v3 
Fuzzy KNN 57.14 92.85 10.3851561  60.5378787 

MLP-SCG 88.57 92.85 1.617754008  91.0769697 

v4 
Fuzzy KNN 73.57 94.28 5.757801674  76.1863636 

MLP-SCG 88.57 94.28 5.038525386  89.3245454 

v5 
Fuzzy KNN 83.57 94.28 2.875146867  85.5148484 

MLP-SCG 85 90.71 1.92122904  88.3290909 

v6 
Fuzzy KNN 82.85 93.57 2.866518451  84.5203030 

MLP-SCG 82.14 95 2.900961341  91.5972727 

 

 

Figure 4.21 Comparative results of different values of hidden neurons and 
layers for MLP-SCG classifier for specific lead (v1, v2, v3, v4, v5, v6) 
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We have selected the best representations for the expert modules based on 

Fuzzy KNN algorithm and MLP-SCG considering the results of the average and 

standard deviation of the 33 experiments performed presented in the Table 4.23, 

shown above.  

 
4.2.4 Hybrid Intelligent System. Type-1 and Interval Type-2 Fuzzy Inference 
Systems. 

Finally, we combined the output results for the twelve selected expert 

modules to be integrated through a type-1 and interval type-2 fuzzy inference 

systems and obtained an 86.42% and 97.14% respectively of global classification 

rate in the hybrid intelligent system based on ECG regions. In Table 4.23, we 

present more details in confusion matrix of interval type-2 fuzzy inference system 

that represents the global classification for the proposed hybrid intelligent system. 

Table 4.23  Results for global interval type-2 fuzzy inference system, combining the outputs of 
the twelve expert modules in proposed hybrid intelligent system 

Class 
Myocardial  

Infarction 
Cardiomyopathy 

Bundle 
Branch 

Block 

Dysrhythmia 
Myocardial 

Hypertrophy 

Valvular 
Heart 

Disease 

Myocarditis Miscellaneous 
Healthy 

Controls 

Myocardial 
Infarction 

18 0 0 1 0 0 0 0 0 

Cardiomyopathy 
0 21 0 0 0 0 0 0 0 

Bundle Branch 

Block 

0 0 23 0 0 0 0 0 0 

Dysrhythmia 
0 0 0 11 0 0 0 0 0 

Myocardial 

Hypertrophy 

0 0 0 0 15 0 0 0 0 

Valvular Heart 

Disease 

0 0 0 0 0 2 0 0 0 

Myocarditis 
0 0 0 0 0 0 9 0 1 

Miscellaneous 
0 0 0 2 0 0 0 18 0 

Healthy 

Controls 

0 0 0 0 0 0 0 0 19 

         Classification rate=     97.14%               

                                 

. 
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4.2.5 Discussion of results 

In the performed experiments, we found out the feature extraction with AR, 

Shannon entropy and wavelets of signals ECGs for the 12-lead captures the 

difference between the classes of the PTB database. We used classifiers based on 

Fuzzy KNN algorithm and MLP-SCG to form the expert modules in the hybrid 

intelligent system. We obtained better results using interval type-2 fuzzy inference 

system compare with type-1 fuzzy inference system to combine the outputs of the 

expert module classifiers. The strategy we have implemented in this model to 

represent the medical knowledge used by cardiologist physicians for ECG 

interpretation helped the proposed Hybrid Intelligent System to increase the overall 

classification rate. In future work, we will optimize the expert modules and fuzzy 

systems with genetic algorithms or other optimization method in order to improve 

the global classification in the proposed hybrid intelligent system. 

4.3. A new variant of Fuzzy K-Nearest Neighbor using Interval Type-2 Fuzzy 
Logic. 

The K-Nearest Neighbor algorithm (KNN) is a widely used method to solve 

different classification problems [67, 68, 69]. Several variants based on Fuzzy 

Logic have been proposed, such as Type-1 Fuzzy Sets, Type-2 Fuzzy Sets, 

Possibilistic Methods, Intuitionistic Fuzzy Sets, Fuzzy Rough Sets, and 

Preprocessing methods via data reduction, that consider the aspects of member, 

distance, voting, independence of k, preprocessing, and center based.  

It is well known that in different applications, the implementation of type-2 

fuzzy logic obtains a better result when compared to type-1 fuzzy logic [70, 38, 71]. 

We propose the idea of implementing an Interval Type-2 Mamdani Fuzzy Inference 

System to improve the performance of the original Fuzzy K-Nearest Neighbor 

algorithm offering a new alternative to use on complex classification problems.  

We used the MIT-BIH arrhythmia database to validate the proposed method. 

This database contains 48 half hour excerpts of two channel ambulatory 

electrocardiograms recordings belonging to 47 patients. The heartbeats are 
segmented and preprocessed [4, 39, 56]. 
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The new variant of the Fuzzy KNN algorithm using an Interval Type-2 Fuzzy 

Inference System, called IT2FISKNN, we consider it as a new variant of the fuzzy 

KNN algorithm, and instead of calculating the inverse of Euclidean distance to 

represent the membership degree of the unknown sample, firstly calculate the 

Euclidean, Hamming, cosine similarity and city block measures of the distances. 

The IT2FISKNN uses these measures of distances as inputs, and through the 

fuzzy rules define the final distance that will replace the Euclidean distance used in 
the original Fuzzy KNN algorithm. 

 

 

 

 

 

 

 

 

                   Figure 4.22 Interval Type-2 Fuzzy System 

 

The IT2FISKNN uses 4 inputs with trapezoidal functions (Low, Medium, and 

High), 47 rules, and 1 output with trapezoidal functions (Low, Medium, and High), 

and centroid defuzzification method, see Figure 4.22. The rules for the IT2FISKNN 

are presented below. The output of the IT2FISKNN is used in the Fuzzy KNN 

algorithm. The rest of the steps of the Fuzzy KNN are executed as they are 
mentioned in the above section.    

The parameters for the Euclidean distance input are:  

• Low= [-5.267 6.267 1.29 1.29 1.269 0.8]. 

• Medium= [2.482 14.03 1.292 1.295 1.27 0.8]. 

• High= [10.24 21.76 1.293 1.3 1.272 0.8]. 
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The parameters for the Hamming distance input are: 

• Low= [0.8628 0.9372 0.0083 0.0083 0.00656 0.8]. 

• Medium= [0.9128 0.9872 0.0083 0.00835 0.00656 0.8]. 

• High= [0.9628 1.038 0.00835 0.0085 0.00648 0.8]. 

 

The parameters for the city block distance input are:  

• Low= [-54.09 66.88 13.49 13.49 8.535 0.8]. 

• Medium= [27.21 148.2 13.5 13.6 8.536 0.8]. 

• High= [108.5 230.8 13.58 13.8 8.44 0.8]. 

 

The parameters for the similarity distance input are:  

• Low= [-0.4622 0.4621 0.1031 0.1031 0.05216 0.8]. 

• Medium= [0.159 1.083 0.1031 0.1038 0.05216 0.8]. 

• High= [0.78 1.715 0.1037 0.1055 0.0516 0.8]. 

The parameters for the output are:  

• Low= [-5.267 6.267 1.29 1.29 1.269 0.8]. 

• Medium= [2.482 14.03 1.292 1.295 1.27 0.8]. 

• High= [10.24 21.76 1.293 1.3 1.272 0.8]. 

 

 

The fuzzy if-then rules of IT2FISKNN are listed as follows: 
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1. IF (euclidean is LOW) and (hamming is LOW) and (cityBlock is LOW) 
and (similarity is LOW) THEN (distance is LOW) 

2. IF (euclidean is MEDIUM) and (hamming is MEDIUM) and (cityBlock 

is MEDIUM) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

3. IF (euclidean is HIGH) and (hamming is HIGH) and (cityBlock is 
HIGH) and (similarity is HIGH) THEN (distance is HIGH) 

4. IF (euclidean is LOW) and (hamming is LOW) and (cityBlock is LOW) 
and (similarity is MEDIUM) THEN (distance is LOW) 

5. IF (euclidean is LOW) and (hamming is LOW) and (cityBlock is LOW) 
and (similarity is HIGH) THEN (distance is LOW) 

6. IF (euclidean is LOW) and (hamming is LOW) and (cityBlock is 
MEDIUM) and (similarity is LOW) THEN (distance is LOW) 

7. IF (euclidean is LOW) and (hamming is LOW) and (cityBlock is HIGH) 
and (similarity is LOW) THEN (distance is LOW) 

8. IF (euclidean is LOW) and (hamming is MEDIUM) and (cityBlock is 

LOW) and (similarity is LOW) THEN (distance is LOW) 

9. IF (euclidean is LOW) and (hamming is HIGH) and (cityBlock is LOW) 

and (similarity is LOW) THEN (distance is LOW) 

10. IF (euclidean is MEDIUM) and (hamming is LOW) and (cityBlock is 
LOW) and (similarity is LOW) THEN (distance is LOW) 

11. IF (euclidean is HIGH) and (hamming is LOW) and (cityBlock is LOW) 
and (similarity is LOW) THEN (distance is LOW) 

12. IF (euclidean is LOW) and (hamming is LOW) and (cityBlock is 
MEDIUM) and (similarity is MEDIUM) THEN (distance is MEDIUM) 
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13. IF (euclidean is LOW) and (hamming is MEDIUM) and (cityBlock is 
LOW) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

14. IF (euclidean is MEDIUM) and (hamming is LOW) and (cityBlock is 

LOW) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

15. IF (euclidean is LOW) and (hamming is MEDIUM) and (cityBlock is 
MEDIUM) and (similarity is LOW) THEN (distance is MEDIUM) 

16. IF (euclidean is MEDIUM) and (hamming is LOW) and (cityBlock is 
MEDIUM) and (similarity is LOW) THEN (distance is MEDIUM) 

17. IF (euclidean is MEDIUM) and (hamming is LOW) and (cityBlock is 
LOW) and (similarity is LOW) THEN (distance is MEDIUM) 

18. IF (euclidean is LOW) and (hamming is LOW) and (cityBlock is HIGH) 
and (similarity is HIGH) THEN (distance is HIGH) 

19. IF (euclidean is LOW) and (hamming is HIGH) and (cityBlock is LOW) 
and (similarity is HIGH) THEN (distance is HIGH) 

20. IF (euclidean is MEDIUM) and (hamming is MEDIUM) and (cityBlock 

is HIGH) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

21. IF (euclidean is HIGH) and (hamming is HIGH) and (cityBlock is 

LOW) and (similarity is HIGH) THEN (distance is HIGH) 

22. IF (euclidean is LOW) and (hamming is HIGH) and (cityBlock is LOW) 
and (similarity is HIGH) THEN (distance is HIGH) 

23. IF (euclidean is HIGH) and (hamming is HIGH) and (cityBlock is 
LOW) and (similarity is HIGH) THEN (distance is HIGH) 

24. IF (euclidean is MEDIUM) and (hamming is MEDIUM) and (cityBlock 
is MEDIUM) and (similarity is LOW) THEN (distance is HIGH) 
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25. IF (euclidean is MEDIUM) and (hamming is MEDIUM) and (cityBlock 
is MEDIUM) and (similarity is HIGH) THEN (distance is MEDIUM) 

26. IF (euclidean is HIGH) and (hamming is HIGH) and (cityBlock is 

HIGH) and (similarity is MEDIUM) THEN (distance is HIGH) 

27. IF (euclidean is MEDIUM) and (hamming is MEDIUM) and (cityBlock 
is LOW) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

28. IF (euclidean is HIGH) and (hamming is HIGH) and (cityBlock is 
LOW) and (similarity is HIGH) THEN (distance is HIGH) 

29. IF (euclidean is MEDIUM) and (hamming is MEDIUM) and (cityBlock 
is LOW) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

30. IF (euclidean is HIGH) and (hamming is HIGH) and (cityBlock is 
LOW) and (similarity is HIGH) THEN (distance is HIGH) 

31. IF (euclidean is MEDIUM) and (hamming is MEDIUM) and (cityBlock 
is HIGH) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

32. IF (euclidean is HIGH) and (hamming is HIGH) and (cityBlock is 

LOW) and (similarity is HIGH) THEN (distance is HIGH) 

33. IF (euclidean is MEDIUM) and (hamming is LOW) and (cityBlock is 

MEDIUM) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

34. IF (euclidean is HIGH) and (hamming is LOW) and (cityBlock is 
HIGH) and (similarity is HIGH) THEN (distance is HIGH) 

35. IF (euclidean is MEDIUM) and (hamming is HIGH) and (cityBlock is 
MEDIUM) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

36. IF (euclidean is HIGH) and (hamming is LOW) and (cityBlock is 
HIGH) and (similarity is HIGH) THEN (distance is HIGH) 
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37. IF (euclidean is LOW) and (hamming is MEDIUM) and (cityBlock is 
MEDIUM) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

38. IF (euclidean is MEDIUM) and (hamming is HIGH) and (cityBlock is 

HIGH) and (similarity is HIGH) THEN (distance is HIGH) 

39. IF (euclidean is MEDIUM) and (hamming is MEDIUM) and (cityBlock 
is HIGH) and (similarity is HIGH) THEN (distance is HIGH) 

40. IF (euclidean is MEDIUM) and (hamming is HIGH) and (cityBlock is 
MEDIUM) and (similarity is HIGH) THEN (distance is HIGH) 

41. IF (euclidean is HIGH) and (hamming is MEDIUM) and (cityBlock is 
HIGH) and (similarity is MEDIUM) THEN (distance is HIGH) 

42. IF (euclidean is LOW) and (hamming is HIGH) and (cityBlock is 
HIGH) and (similarity is LOW) THEN (distance is HIGH) 

43. IF (euclidean is MEDIUM) and (hamming is HIGH) and (cityBlock is 
MEDIUM) and (similarity is HIGH) THEN (distance is HIGH) 

44. IF (euclidean is HIGH) and (hamming is LOW) and (cityBlock is 

HIGH) and (similarity is LOW) THEN (distance is HIGH) 

45. IF (euclidean is LOW) and (hamming is MEDIUM) and (cityBlock is 

LOW) and (similarity is MEDIUM) THEN (distance is MEDIUM) 

46. IF (euclidean is HIGH) and (hamming is MEDIUM) and (cityBlock is 
HIGH) and (similarity is MEDIUM) THEN (distance is HIGH) 

47. IF (euclidean is HIGH) and (hamming is HIGH) and (cityBlock is 
MEDIUM) and (similarity is MEDIUM) THEN (distance is HIGH). 
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 The fuzzy if-then rules were designed thinking about combining the 

measures of the distances from the different perspectives provided by each metric 

with respect to the vector unknown classification. For example, if the Euclidean, 

Hamming, city block and similarity measures are the same perspective, then the 

consequent will be the same perspective. If the three measures have the same 

perspective, then will be that perspective as the consequent. In others words, we 

consider the majority perspective of the measures to represent the consequent. 

We have not considered all the possible options of the fuzzy rules that can be 
created, instead of this, the most important fuzzy rules are considered. 

4.3.1. Experiments and Results. 

In this section, we describe details for the MIT-BIH Arrhythmia database, 
experimental setup, and simulation results.  

For this work, we used the MIT-BIH Arrhythmia Database to validate the 

proposed method. A set of samples of heartbeat records from this database are 

extracted. The heartbeats are segmented and transformed in the preprocessing 

stage [4]. The samples of heartbeats are normal beat (NB), left bundle branch 

block beat (LBBB), right bundle branch block beat (RBBB), premature ventricular 

contraction beat (PVC), fusion paced and normal beat (FPN), atrial premature beat 

(APB), aberrated atrial premature beat (AAPB), fusion of ventricular and normal 

beat (FVNB), ventricular escape beat (VEB) and paced beat (PB). In Figure 4.23, 

some examples of the MIT-BIH arrhythmia database are presented. The MIT-BIH 

arrhythmia database contains 48 half-hour excerpts of two channel ambulatory 

electrocardiogram recordings belonging to 47 patients, 22 women and 25 men 

aged between 23 and 89 years. In Table 4.24, results of cross validation using 3 

nearest neighbors, we obtained best classification rate in fold 8 with a 93% for 

ITSFISKNN compared with 91% for Fuzzy KNN. In Table 4.25, results of cross 

validation are listed with 4 nearest neighbors, we obtained the best classification 

rate in fold 1 with a 93% for IT2FISKNN compared with a 92% for Fuzzy KNN. In 

Table 4.26, results of cross validation are listed with 4 nearest neighbors, we 
obtained best classification rate in fold 3 with a 91% for IT2FISKNN. 
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                       Table 4.24 Results for Cross Validation K Fold 10, K=3 

 

 

 

 

 

 

 

 

 

 

 

             Table 4.25 Results for Cross Validation K Fold 10, K=4 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

K=3 

Fuzzy KNN IT2FISKNN 

Fold 1 
91 89 

Fold 2 
95 94 

Fold 3 
90 90 

Fold 4 
90 86 

Fold 5 
86 85 

Fold 6 
90 88 

Fold 7 
92 89 

Fold 8 
91 93 

Fold 9 
87 85 

Fold 10 
90 87 

Classification rate 
90.2 88.6 

 
K=4 

Fuzzy KNN IT2FISKNN 

Fold 1 
92 93 

Fold 2 
95 95 

Fold 3 
91 91 

Fold 4 
90 87 

Fold 5 
87 85 

Fold 6 
89 89 

Fold 7 
92 91 

Fold 8 
93 93 

Fold 9 
87 87 

Fold 10 
93 90 

Classification rate 
90.9 90.1 
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                Table 4.26 Results for Cross Validation K Fold 10, K=5 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the confusion matrix of the Fuzzy KNN algorithm and IT2FISKNN 

are presented in Tables 4.27 and 4.28. The results are organized by class in both 

confusion matrices. We have decided to show only the results with 4 nearest 

neighbors because it is the best result so far. We can observe the classification 

rate of LBBB is slightly better for IT2FISKNN than Fuzzy KNN.  In the rest of the 

classes, the classification rates are tied and in others, the Fuzzy KNN algorithm is 
better than IT2FISKNN. 

 
K=5 

Fuzzy KNN IT2FISKNN 

Fold 1 
91 89 

Fold 2 
95 93 

Fold 3 
90 91 

Fold 4 
86 83 

Fold 5 
86 86 

Fold 6 
89 89 

Fold 7 
92 90 

Fold 8 
92 90 

Fold 9 
86 83 

Fold 10 
93 89 

Classification rate 
90 88.3 

 

 

 

 
Figure 4.23  Normal beat and arrhythmias of the MIT-BIH Arrhythmia Database 

N LBB RBB PVC FPN 

AP AAP FVN P VE 
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           Table 4.27 Confusion Matrix of Fuzzy KNN Algorithm, K=4 

 

 

 

 

 

 

 

 

 

 

 

 

           Table 4.28 Confusion Matrix of IT2SFISKNN, K=4 

 

 

 

 

 

 

 

 

 

 

 

 

 

K=4 

N
B

 

L
B

B
B

 

R
B

B
B

 

PV
C

 

FPN
 

A
PB

 

A
A

PB
 

FV
N

B
 

V
E

B
 

PB
 

NB 
97 0 0 0 0 1 0 2 0 0 

LBBB 
0 91 1 0 0 1 2 3 2 0 

RBBB 
1 2 95 0 1 0 1 0 0 0 

PVC 
0 3 0 85 2 0 1 2 1 6 

FPN 
0 0 1 2 87 0 1 6 0 3 

APB 
0 1 0 0 1 93 5 0 0 0 

AAPB 
0 3 0 1 0 11 80 1 4 0 

FVNB 
1 4 1 1 3 1 0 89 0 0 

VEB 
0 1 0 0 0 0 5 0 94 0 

PB 
0 0 0 0 2 0 0 0 0 98 

 

 

K=4 

N
B

 

L
B

B
B

 

R
B

B
B

 

PV
C

 

FPN
 

A
PB

 

A
A

PB
 

FV
N

B
 

V
E

B
 

PB
 

NB 96 0 0 0 0 1 0 3 0 0 

LBBB 0 92 0 0 0 2 1 3 2 0 

RBBB 2 2 94 0 1 0 1 0 0 0 

PVC 0 3 0 84 2 1 1 2 1 6 

FPN 0 1 2 1 86 0 1 5 0 4 

APB 0 0 0 0 1 93 6 0 0 0 

AAPB 0 4 0 0 0 14 78 1 3 0 

FVNB 3 4 1 1 4 1 0 86 0 0 

VEB 0 1 0 0 0 0 5 0 94 0 

PB 0 0 0 0 2 0 0 0 0 98 
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4.3.2. Discussion of results 

In this work, we have proposed a new variant of the Fuzzy K-Nearest 

Neighbor algorithm using Type-2 Fuzzy Logic and we found out the possibility to 

use an interval type-2 fuzzy inference system and several measures to calculate 

the distances between the neighbors and the vectors to classify. In the performed 

experiments using cross validation some folds with better classification rate than 

the Fuzzy KNN algorithm. Although until now, we have not obtained a better global 

classification rate using IT2FISKNN that exceeds the Fuzzy KNN, 90.1% and 

90.9% of classification rate, respectively. We continue to perform experiments and 

making changes to the Interval type-2 fuzzy inference system to improve the 
results in the classification rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



        86 
 

Chapter 5 
Conclusions and Future works 
 

In the results presented of the first study case in the model for 2-lead 

cardiac arrhythmia classification with respect to the performed experiments, we 

conclude that we have obtained a good classification rate with the classifiers in the 

two basic module units, and even more combining their outputs using fuzzy logic 

we have obtained even better results; in this part of the hybrid system, we used 

two options to combine the results of the classifiers in the basic module units and 

we have presented a comparison between type-1 FIS and IT2FIS with hypothesis 

testing. We obtained the best results using an IT2FIS than type-1 FIS in basic 

module unit 1. We improved the classification rate in the basic module unit with 10-

fold cross validation using a type-2 fuzzy system. In the comparison using 

hypothesis testing, although the current results do not provide sufficient statistical 

evidence to reject the null hypothesis, we find out that using type-2 fuzzy logic, we 

can achieve better results, and we can still improve the interval type-2 fuzzy 

system with optimization methods. Referring to the basic module unit 2, we 

obtained better results used type-2 fuzzy system comparing with type-1 FIS 
combining the results of the classifiers above mentioned. 

We used two basic module units in the hybrid model, where each one was 

trained with electrode signals of the MIT-BIH arrhythmia database and we 

combined the output results of the two basic module units using a type-1 FIS, the 

results show the improvement of the global classification rate in the hybrid model. 

We found out that some samples of heartbeats were misclassified by one basic 

module unit. However, when combining the outputs with 2-lead using two basic 

module units some samples with misclassification were fixed and classified 

correctly by the other basic module unit using a fuzzy system, and in this form we 

have obtained better performance and classification rate using a hybrid model to 
resolve cardiac arrhythmia classification problem.  
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Based on the obtained results, we found out that IT2FIS from Unit 1 

achievement obtain the same classification rate than the global hybrid model used 

type-1 FIS, but also we have included an IT2FIS to use in the global hybrid model. 

Therefore, we can show that global IT2FIS provided higher accuracy combining 

type-1 FIS. In other words, implementing type-2 instead of type-1 fuzzy logic 
improves overall accuracy of the proposed hybrid model.  

Some advantages about the proposed hybrid model are that we can 

combine several computational intelligence methods using fuzzy systems to 

increase the overall accuracy of the hybrid model. We can separate into basic 

module units of expert modules for the electrode signal or lead of an ECG to 

consider the different perspectives that offers each lead and helps the classification 

of cardiac arrhythmias. One disadvantage that we can mention with respect to the 

proposed hybrid model relates to the total number of fuzzy rules for the fuzzy 

systems, and for this reason is necessary to optimize, for example, with genetic 

algorithms or other technique in order to reduce the total of fuzzy rules in the fuzzy 

systems. 

In the performed experiments of the second study case, for the model of 12-

leads cardiac arrhythmia classification we found out the feature extraction with AR, 

Shannon entropy and wavelets of signals ECGs for the 12-lead captures the 

difference between the classes of the PTB database. We used classifiers based on 

the Fuzzy KNN algorithm and MLP-SCG to form the expert modules in the hybrid 

intelligent system. We obtained better results used interval type-2 fuzzy inference 

systems compare type-1 fuzzy inference systems to combine the outputs of the 

expert module classifiers. The strategy we have implemented in this model to 

represent the medical knowledge used by cardiologist physicians for ECG 

interpretation helped the proposed Hybrid Intelligent System to increase the overall 

classification rate. In future works, we will optimize the expert modules and fuzzy 

systems with genetic algorithms or other optimization methods in order to improve 
the global classification in the proposed hybrid intelligent system. 
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Appendix 
 
A.1. Function MLPPTB 

function [matrizConfusion,order_matrizConfusion,ECGNet10000, Activaciones, ClasificacionMLP 
]=MLPPTB(TrainSet, TestSet, neuronasCapaOculta) 
  
clasificacionEntrenamiento_Conocida = TrainSet(:,end); 
TrainSet = TrainSet(:,1:end-1); 
  
clasificacionPrueba_Conocida = TestSet(:,end); 
clasificacionPrueba_Conocida = clasificacionPrueba_Conocida'; 
TestSet = TestSet(:,1:end-1); 
  
TrainOut = zeros (size(TrainSet,1), 9); 
for i=1:1:length(clasificacionEntrenamiento_Conocida) 
    switch clasificacionEntrenamiento_Conocida(i)  
        case 1 
           TrainOut(i,1) = 1; 
        case 2 
           TrainOut(i,2) = 1;   
        case 3 
           TrainOut(i,3) = 1; 
        case 4 
           TrainOut(i,4) = 1; 
        case 5 
           TrainOut(i,5) = 1; 
        case 6 
           TrainOut(i,6) = 1; 
        case 7 
           TrainOut(i,7) = 1; 
        case 8 
           TrainOut(i,8) = 1; 
        case 9 
           TrainOut(i,9) = 1;  
         
    end 
end 
  
  
TrainSet = TrainSet'; 
TrainOut = TrainOut'; 
TestSet = TestSet'; 
  
  
datos = TrainSet; 
datos(:,(end+1):(end + size(TestSet,2))) = TestSet; 
Ranges = minmax(datos); 
  
Arch = [neuronasCapaOculta 9]; 
  
ActFunc = {'logsig', 'logsig'}; 
ECGNet = newff(Ranges, Arch, ActFunc, 'traingd'); 
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ECGNet.trainParam.epochs = 10000; 
ECGNet.trainParam.lr = 0.001; 
ECGNet.layerWeights{1,2}.trainParam.lr = 0.001; 
ECGNet.layerWeights{1,2}.trainParam.learnFcn = 'learngdm'; 
ECGNet.layerWeights{1,2}.trainParam.mc = 0.5; 
ECGNet10000 = train(ECGNet, TrainSet, TrainOut); 
  
out = sim(ECGNet10000, TestSet); 
  
revisa = out; 
revisa(10,:) = clasificacionPrueba_Conocida; 
  
  
  
for i=1:1:size(out,2) 
    maximo=0; 
    for j=1:1:size(out,1) 
        if out(j,i) > maximo(1,1) 
            maximo(1,1) = out(j,i); 
              
            maximo(1,2) = j; 
            
        end 
    end 
    ClasificacionMLP(i) = maximo(1,2); 
    clear maximo; 
end 
  
 Activaciones = out; 
%matriz de confusion 
g1= clasificacionPrueba_Conocida; 
g2 = ClasificacionMLP; 
      
[matrizConfusion,order_matrizConfusion] = confusionmat(g1,g2); 
 
A.2. Function MLPPTB2 

function [matrizConfusion,order_matrizConfusion,ECGNet10000, Activaciones, ClasificacionMLP 
]=MLPPTB2(TrainSet, TestSet, neuronasCapaOculta) 
  
clasificacionEntrenamiento_Conocida = TrainSet(:,end); 
TrainSet = TrainSet(:,1:end-1); 
  
clasificacionPrueba_Conocida = TestSet(:,end); 
clasificacionPrueba_Conocida = clasificacionPrueba_Conocida'; 
TestSet = TestSet(:,1:end-1); 
  
TrainOut = zeros (size(TrainSet,1), 3); 
for i=1:1:length(clasificacionEntrenamiento_Conocida) 
    switch clasificacionEntrenamiento_Conocida(i)  
        case 1 
           TrainOut(i,1) = 1; 
        case 2 
           TrainOut(i,2) = 1;   
        case 3 
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           TrainOut(i,3) = 1; 
        case 4 
           TrainOut(i,4) = 1; 
        case 5 
           TrainOut(i,5) = 1; 
        case 6 
           TrainOut(i,6) = 1; 
        case 7 
           TrainOut(i,7) = 1; 
        case 8 
           TrainOut(i,8) = 1; 
        case 9 
           TrainOut(i,9) = 1;  
         
    end 
end 
  
  
TrainSet = TrainSet'; 
TrainOut = TrainOut'; 
TestSet = TestSet'; 
  
  
datos = TrainSet; 
datos(:,(end+1):(end + size(TestSet,2))) = TestSet; 
Ranges = minmax(datos); 
  
Arch = [neuronasCapaOculta  3]; 
  
ActFunc = {'logsig', 'logsig'}; 
ECGNet = newff(Ranges, Arch, ActFunc, 'trainscg'); 
  
  
ECGNet.trainParam.epochs = 10000; 
ECGNet.trainParam.lr = 0.001; 
ECGNet.layerWeights{1,2}.trainParam.lr = 0.001; 
ECGNet10000 = train(ECGNet, TrainSet, TrainOut); 
  
out = sim(ECGNet10000, TestSet); 
  
revisa = out; 
revisa(4,:) = clasificacionPrueba_Conocida; 
  
for i=1:1:size(out,2) 
    maximo=0; 
    for j=1:1:size(out,1) 
        if out(j,i) > maximo(1,1) 
            maximo(1,1) = out(j,i); 
           
            if j==6 
                 maximo(1,2) = 9; 
            else 
                 maximo(1,2) = j;  
            end 
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        end 
    end 
    ClasificacionMLP(i) = maximo(1,2); 
    clear maximo; 
end 
  
 Activaciones = out; 
%matriz de confusion 
g1= clasificacionPrueba_Conocida; 
g2 = ClasificacionMLP; 
      
[matrizConfusion,order_matrizConfusion] = confusionmat(g1,g2); 
  
 
A.3. Function FuzzyKNNPTB 

function [predicted,memberships, numhits, matrizConfusion,order_matrizConfusion]= 
FuzzyKnnPTB(datosEntrenamiento, datosPrueba, k_values, info, fuzzy) 
  
data= datosEntrenamiento(:,1:size(datosEntrenamiento,2)-1); 
labels(:,1)= datosEntrenamiento(:,size(datosEntrenamiento,2)); 
  
  
test= datosPrueba(:,1:size(datosPrueba,2)-1); 
testlabels(:,1)= datosPrueba(:,size(datosPrueba,2)); 
  
[predicted,memberships, numhits] = fknn(data, labels, test, testlabels, k_values, info, fuzzy); 
  
ClasficacionFKNN = predicted; 
  
ClasesDatosValidacion= testlabels; 
 %matriz de confusion 
 g1= ClasesDatosValidacion; %known groups 
 g2 =ClasficacionFKNN'; %predicted groups 
  
 [matrizConfusion,order_matrizConfusion] = confusionmat(g1,g2); 
  
  % 
  
 clear g1; 
 clear g2; 
 
 
A.4. Function HerlperRandomSplit 

function [trainData, testData, trainLabels, testLabels]= helperRandomSplit(percent_train, 
ECGDataPTB) 
  
totalECG= size(ECGDataPTB.Data.Data_i,1); 
tamanoEntrenamiento= floor(totalECG*percent_train/100); 
  
idx = randperm(totalECG); 
indexToTrain = (idx<=tamanoEntrenamiento); 
indexToTest = (idx>tamanoEntrenamiento); 
  
trainData.trainData_i = ECGDataPTB.Data.Data_i(indexToTrain,:); 
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testData.trainData_i = ECGDataPTB.Data.Data_i(indexToTest,:);  
  
trainData.trainData_ii = ECGDataPTB.Data.Data_ii(indexToTrain,:); 
testData.trainData_ii = ECGDataPTB.Data.Data_ii(indexToTest,:);  
  
trainData.trainData_iii = ECGDataPTB.Data.Data_iii(indexToTrain,:); 
testData.trainData_iii = ECGDataPTB.Data.Data_iii(indexToTest,:);  
  
trainData.trainData_avr = ECGDataPTB.Data.Data_avr(indexToTrain,:); 
testData.trainData_avr = ECGDataPTB.Data.Data_avr(indexToTest,:);  
  
trainData.trainData_avl = ECGDataPTB.Data.Data_avl(indexToTrain,:); 
testData.trainData_avl = ECGDataPTB.Data.Data_avl(indexToTest,:);  
  
trainData.trainData_avf = ECGDataPTB.Data.Data_avf(indexToTrain,:); 
testData.trainData_avf = ECGDataPTB.Data.Data_avf(indexToTest,:);  
  
trainData.trainData_v1 = ECGDataPTB.Data.Data_v1(indexToTrain,:); 
testData.trainData_v1 = ECGDataPTB.Data.Data_v1(indexToTest,:);  
  
trainData.trainData_v2 = ECGDataPTB.Data.Data_v2(indexToTrain,:); 
testData.trainData_v2 = ECGDataPTB.Data.Data_v2(indexToTest,:);  
  
trainData.trainData_v3 = ECGDataPTB.Data.Data_v3(indexToTrain,:); 
testData.trainData_v3 = ECGDataPTB.Data.Data_v3(indexToTest,:);  
  
trainData.trainData_v4 = ECGDataPTB.Data.Data_v4(indexToTrain,:); 
testData.trainData_v4 = ECGDataPTB.Data.Data_v4(indexToTest,:);  
  
trainData.trainData_v5 = ECGDataPTB.Data.Data_v5(indexToTrain,:); 
testData.trainData_v5 = ECGDataPTB.Data.Data_v5(indexToTest,:);  
  
trainData.trainData_v6 = ECGDataPTB.Data.Data_v6(indexToTrain,:); 
testData.trainData_v6 = ECGDataPTB.Data.Data_v6(indexToTest,:);  
  
trainData.trainData_vx = ECGDataPTB.Data.Data_vx(indexToTrain,:); 
testData.trainData_vx= ECGDataPTB.Data.Data_vx(indexToTest,:);  
  
trainData.trainData_vy = ECGDataPTB.Data.Data_vy(indexToTrain,:); 
testData.trainData_vy = ECGDataPTB.Data.Data_vy(indexToTest,:);  
  
trainData.trainData_vz = ECGDataPTB.Data.Data_vz(indexToTrain,:); 
testData.trainData_vz = ECGDataPTB.Data.Data_vz(indexToTest,:);  
  
  
trainLabels= ECGDataPTB.Labels(indexToTrain,:); 
testLabels= ECGDataPTB.Labels(indexToTest,:); 
 
A.5. Function Main 

% FKNN  
  
         knn= 3; 
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        [predicted_Fknn_3,memberships_Fknn_3, 
numhits_Fknn_3,matrizConfusionFknn_3,order_matrizConfusion_Fknn_3]= 
FuzzyKnnPTB(TrainSet, TestSet ,knn, 0, true, clasificacionPrueba_Conocida); 
          
               
        PorcentajeClasificacion_Fknn_3=0; 
        TotalCorrectos_Fknn_3=0; 
        TotalErrores_Fknn_3=0; 
         
        for iclass=1:1:size(order_matrizConfusion_Fknn_3,1) 
             
           TotalCorrectos_Fknn_3=TotalCorrectos_Fknn_3 + matrizConfusionFknn_3(iclass,iclass); 
          
        end 
         
        TotalErrores_Fknn_3= size( clasificacionPrueba_Conocida,1) - TotalCorrectos_Fknn_3; 
        PorcentajeClasificacion_Fknn_3= (TotalCorrectos_Fknn_3*100)/  size( 
clasificacionPrueba_Conocida,1); 
  
 
%200 
 neuronasCapaOculta = 200; 
[matrizConfusionMLP2_200,order_matrizConfusionMLP2_200, ECGNet10000MLP2_200, 
ActivacionesMLP2_200, ClasificacionMLP2_200  ]=MLPPTB_Mod(TrainSet, TestSet, 
neuronasCapaOculta); 
  
     
  
    PorcentajeClasificacion_MLP2_200=0; 
    TotalCorrectosMLP2_200=0; 
    TotalErroresMLP2_200=0; 
  
    for iclass=1:1:size(order_matrizConfusionMLP2_200,1) 
  
       TotalCorrectosMLP2_200=TotalCorrectosMLP2_200 + 
matrizConfusionMLP2_200(iclass,iclass); 
  
    end 
  
    TotalErroresMLP2_200= size( clasificacionPrueba_Conocida,1) - TotalCorrectosMLP2_200; 
    PorcentajeClasificacion_MLP2_200= (TotalCorrectosMLP2_200*100)/  size( 
clasificacionPrueba_Conocida,1); 
      
 %50 
 neuronasCapaOculta = 50; 
[matrizConfusionMLP2_50_2L,order_matrizConfusionMLP2_50_2L, ECGNet10000MLP2_50_2L, 
ActivacionesMLP2_50_2L, ClasificacionMLP2_50_2L  ]=MLPPTB_Mod(TrainSet, TestSet, 
neuronasCapaOculta); 
  
 
    PorcentajeClasificacion_MLP2_50_2L=0; 
    TotalCorrectosMLP2_50_2L=0; 
    TotalErroresMLP2_50_2L=0; 
  
    for iclass=1:1:size(order_matrizConfusionMLP2_50_2L,1) 
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       TotalCorrectosMLP2_50_2L=TotalCorrectosMLP2_50_2L + 
matrizConfusionMLP2_50_2L(iclass,iclass); 
  
    end 
  
    TotalErroresMLP2_50_2L= size( clasificacionPrueba_Conocida,1) - TotalCorrectosMLP2_50_2L; 
    PorcentajeClasificacion_MLP2_50_2L= (TotalCorrectosMLP2_50_2L*100)/  size( 
clasificacionPrueba_Conocida,1); 
  
 %IntegrationMatrix 

 
MatrizIntegracion(1:2,:)= ActivacionesMLP2_150_i(1:2,1:end); 
MatrizIntegracion(3:4,:)= ActivacionesMLP2_50_ii(1:2,1:end); 
MatrizIntegracion(5:6,:)= ActivacionesMLP2_150_iii(1:2,1:end); 
MatrizIntegracion(7:8,:)= ActivacionesMLP2_150_avf(1:2,1:end); 
MatrizIntegracion(9:10,:)= membershipsFKNN_4_avr(1:end,1:2)'; 
MatrizIntegracion(11:12,:)= membershipsFKNN_5_avl(1:end,1:2)'; 
MatrizIntegracion(13:14,:)= membershipsFKNN_3_v1(1:end,1:2)'; 
MatrizIntegracion(15:16,:)= membershipsFKNN_4_v2(1:end,1:2)'; 
MatrizIntegracion(17:18,:)= membershipsFKNN_5_v3(1:end,1:2)'; 
MatrizIntegracion(19:20,:)=  ActivacionesMLP2_150_v4(1:2,1:end); 
MatrizIntegracion(21:22,:)=  ActivacionesMLP2_50_v5(1:2,1:end); 
MatrizIntegracion(23:24,:)=  ActivacionesMLP2_100_v6(1:2,1:end); 
  
MatrizIntegracion= MatrizIntegracion'; 
  
  
%CombiningFuzzyInferenceSystem 

fismat= readfis('Fis_PTB.fis'); 
[ClasificacionArritmiasFinal]=evalfis(MatrizIntegracion, fismat); 
  
  
outputValidacion= ClasificacionArritmiasFinal'; 
  
for i=1:1:size(outputValidacion,2) 
    maximo=0; 
    for j=1:1:size(outputValidacion,1) 
        if outputValidacion(j,i) > maximo(1,1) 
            maximo(1,1) = outputValidacion(j,i); 
            maximo(1,2) = j; 
     
        end 
    end 
    ClasificacionValidacion_Fis(i) = maximo(1,2); 
    clear maximo; 
  
end 
  
ClasificacionValidacion_Fis=  ClasificacionValidacion_Fis'; 
  
%matriz de confusion 
 g1= testLabels; %known groups 
 g2 =ClasificacionValidacion_Fis; %predicted groups 
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 [matrizConfusion,order_matrizConfusion] = confusionmat(g1,g2); 
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