
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 

 
 

 

Tecnológico Nacional de México 
 

Centro Nacional de Investigación 
y Desarrollo Tecnológico 

 

Tesis de Doctorado 
 

Diseño de sensores virtuales basados en 
observadores para la estimación de variables y la 

detección de fallas en sistemas biológicos 
 
 

presentada por 
MC. Dulce Alejandra Serrano Cruz 

 
como requisito para la obtención del grado de 

Doctora en Ciencias en Ingeniería Electrónica  
 

Director de tesis 
Dr. Carlos Manuel Astorga Zaragoza 

 
Codirector de tesis 

Dr. Gerardo Vicente Guerrero Ramírez 
 

Cuernavaca, Morelos, México. Diciembre de 2024. 
 



0 
ACEPTACION DE IMPRESION DEL 

cenidet 
DOCUMENTO DE TESIS DOCTORAL 

Centro NsciO()iN de, lnv�iga<"ión 

Referencia a la Norma ISO 9001 :2008 )1 DeSürrollo TOCIICJ/qJICO 

7.2.1, 7.5.1, 7.6, 8.1, 8.2.4 

Dr. Carlos Manuel Astorga Zaragoza 
Subdirector Académico 
P r e s e n t e  

7.1, 

Código: CENIDET-AC-006-O20 

Revisión: O 

Página 1 de 1 

Cuernavaca, Mor., a 03 de octubre de 2024 

At'n: Dr. Víctor Manuel Alvarado Martínez 
Presidente del Claustro Doctoral 

del Departamento de Ingeniería Electrónica 

Los abajo firmantes, miembros del Comité Tutoría! de la estudiante Dulce Alejandra Serrano Cruz manifiestan que después de 
haber revisado el documento de tesis titulado "DISEÑO DE SENSORES VIRTUALES BASADOS EN OBSERVADOR PARA LA
ESTIMACIÓN DE VARIABLES Y LA DETECCIÓN DE FALLAS EN SISTEMAS BIOLÓGICOS", realizado bajo la dirección del Dr. Carlos
Manuel Astorga Zaragoza y la codirección del Dr. Gerardo Vicente Guerrero Ramírez, el trabajo se ACEPTA para proceder a su 
impresión. 

ATENTAMENTE 

TecNM/CENIDET 

IDr. Ju/n Reyes Reyes 
TecNM IDET 

Dr. fosé Francisco Gómez Aguilar 
TecNM/CENIDET 

c.c.p: M.T.I Maria Elena Gómez Torres/ Jefa del Departamento de Servicios Escolares.

c.c.p: Dr. Jarniel García Morales / Jefe del Departamento de Ingeniería Electrónica.

c.c.p: Expediente.

CENIDET-AC-006-O20 
Rev. O 





iv



Agradecimientos

Quiero expresar mi gratitud a quienes han sido fundamentales en este recorrido.

A mis asesores en México, Dr. Carlos Manuel Astorga Zaragoza y el Dr. Gerardo Vicente
Guerrero Ramírez, quienes me guiaron, apoyaron y siempre me brindaron su amistad. ¡In-
finitas gracias!

A mis asesores en Francia, Dr. Mohamed Darouach y en especial a la Dra. Latifa
BOUTAT-BADDAS sin su excelente asesoramiento y apoyo durante toda la tesis, este proyecto
nunca hubiera sido posible. También le agradezco sus valiosos comentarios y sugerencias tanto
durante el trabajo como durante la fase final de redacción.

A mis hermanos Sara, Elisa, Monse y Angel, por ser mis primeros compañeros de vida,
por el apoyo incondicional y por compartir cada momento, bueno o difícil, a lo largo de este
proceso. Su amor y respaldo me han dado la fortaleza para seguir adelante cuando más lo
necesitaba.

A mi padre Reynaldo Serrano, quien me ha enseñado el valor del esfuerzo y la determi-
nación. Gracias por tus consejos y por ser un pilar de estabilidad en mi vida. Todo lo que
he logrado lleva también tu huella y tus enseñanzas.

A mis amigos, quienes han sido mi refugio y mi fuente de alegría en los momentos de
agotamiento.

Y Alex, gracias por tu cariño y constante apoyo. Tu confianza en mí ha sido una luz en
los momentos de duda.

Al Consejo Nacional de Ciencias y Tecnología (CONACYT) por el apoyo económico
brindado para poder realizar y culminar mis estudios de doctorado.

Finalmente, agradezco profundamente al Centro Nacional de Investigación y Desarrollo
Tecnológico (CENIDET) por darme la oportunidad de estudiar y prepararme, así como de
tener un ambiente muy agradable de trabajo y una atención excelente en todo momento.

v



vi



Quiero dedicar esta tesis a la memoria de mi madre, cuya influencia ha sido una constante fuente de inspiración y
fuerza en mi vida. A pesar de que ya no está físicamente conmigo, siento cada día su presencia en mi corazón y

en cada logro que he alcanzado. Mamá, tu dedicación, tu esfuerzo y tus enseñanzas siempre me guiaron y me
recordaron la importancia del conocimiento y la perseverancia. Sin ti, este logro no hubiera sido posible, y es a ti

a quien dedico cada página de este trabajo. Gracias por enseñarme a soñar y a trabajar duro por esos sueños.
Esta tesis es para ti, con todo mi amor y mi eterno agradecimiento.

vii



viii



Résumé du travail:

Cette thèse propose une nouvelle méthodologie pour le diagnostic et la détection des anomalies du système
cardiovasculaire (CVS) dans des conditions où l’état est linéairement non observable.

Le premier apport majeur consiste en l’extension de la forme normale d’observabilité quadratique, initiale-
ment développée pour les systèmes non linéaires SISO, aux systèmes MIMO. Cette extension est appliquée
aussi bien aux cas où la partie linéaire est observable qu’à ceux où elle présente une variété non observable.
La forme normale met en évidence la surface des singularités d’observabilité. L’identification de ces singu-
larités permet de rétablir l’observabilité des systèmes non linéaires à l’aide de termes résonants (en états ou
en entrées), garantissant ainsi un bon fonctionnement de l’observateur malgré les zones inobservables.

Le deuxième apport porte sur la synthèse d’un observateur à mode glissant, basé sur cette forme nor-
male d’observabilité équivalente. Cet observateur reconstruit le comportement dynamique du système en
intégrant des termes résonants quadratiques spécifiques, compensant ainsi la perte d’observabilité tout en
tenant compte de la surface de singularité d’observabilité. Cette approche repose sur l’utilisation d’un filtre
qui adapte la correction de l’observateur à proximité de la surface de singularité, garantissant une estimation
robuste.

Le troisième apport concerne l’application de cette méthodologie au diagnostic et à la détection des
anomalies cardiovasculaires, telles que la régurgitation et la sténose. En transformant le modèle du CVS en
une forme normale quadratique d’observabilité, les singularités d’observabilité du système sont mises en évi-
dence, permettant ainsi de concevoir un observateur à mode glissant capable de détecter et d’isoler ces défauts
en exploitant les termes résonants du système. La méthodologie proposée a été validée par des simulations
numériques, démontrant que l’observateur à mode glissant est capable de détecter et d’isoler les anomalies
du système cardiovasculaire, même lorsque certaines parties deviennent temporairement inobservables.

Les résultats montrent que le modèle reproduit fidèlement les paramètres hémodynamiques et permet
d’estimer des variables critiques telles que les pressions ventriculaire et auriculaire. En cas d’anomalies
comme la régurgitation mitrale ou aortique, l’observateur peut reconstruire le comportement dynamique du
système en utilisant des termes non linéaires spécifiques, compensant ainsi la perte d’observabilité. Cela
assure un diagnostic fiable et précis, même dans des conditions pathologiques complexes.

Mots-clés: Forme d’observabilité Brunovsky, systèmes non linéaires multi-entrées multi-sorties, système
cardiovasculaire; maladies cardiaques; boucles pression-volume; forme normale; observateur en mode glissant;
détection et isolation des défauts; états inobservables.
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Abstract

This thesis proposes a new methodology for diagnosing and detecting anomalies in the cardiovascular system
(CVS) under conditions where the state is linearly unobservable.

The first major contribution consists of extending the quadratic observability normal form, initially de-
veloped for nonlinear SISO systems, to MIMO systems. This extension is applied to both cases where the
linear part is observable and where it presents an unobservable manifold. The normal form highlights the
surface of observability singularities. Identifying these singularities allows the restoration of observability in
nonlinear systems using resonant terms (in states or inputs), thereby ensuring the proper functioning of the
observer despite unobservable regions.

The second contribution involves the synthesis of a sliding mode observer based on this equivalent ob-
servability normal form. This observer reconstructs the system’s dynamic behavior by integrating specific
quadratic resonant terms, thus compensating for the loss of observability while accounting for the observabil-
ity singularity surface. This approach relies on the use of a filter that adjusts the observer’s correction near
the singularity surface, ensuring robust estimation.

The third contribution concerns the application of this methodology to the diagnosis and detection of car-
diovascular anomalies, such as regurgitation and stenosis. By transforming the CVS model into a quadratic
observability normal form, the system’s observability singularities are revealed, allowing for the design of
a sliding mode observer capable of detecting and isolating these faults by exploiting the system’s resonant
terms. The proposed methodology has been validated through numerical simulations, demonstrating that
the sliding mode observer can detect and isolate cardiovascular system anomalies, even when certain parts
become temporarily unobservable. The results show that the model accurately reproduces hemodynamic pa-
rameters and enables the estimation of critical variables such as ventricular and atrial pressures. In the case
of anomalies like mitral or aortic regurgitation, the observer can reconstruct the system’s dynamic behavior
by using specific nonlinear terms, thereby compensating for the loss of observability. This ensures a reliable
and precise diagnosis, even in complex pathological conditions.

Keywords: Brunovsky observability form, multi-input multi-output nonlinear systems, cardiovascular
system; heart diseases; pressure-volume loops; normal form; sliding mode observer; fault detection and isola-
tion; unobservable states.
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General introduction

1 Introduction

In the field of nonlinear control systems, understanding the observability properties of multi-input multi-
output (MIMO) systems is crucial for accurate state estimation, effective control, and reliable fault detec-
tion. Observability defines whether the internal states of a system can be deduced from its outputs over
time, forming a foundational concept in the design of observers that ensure robust system performance
across diverse operational conditions. However, traditional approaches to observability in nonlinear systems
often encounter limitations with complex dynamics and higher-order terms, underscoring the need for more
generalized approaches.

This thesis introduces a novel approach for analyzing observability in nonlinear MIMO systems by de-
veloping a higher-order observability normal form, specifically based on the second-order Poincaré normal
form. The proposed method extends the classical theory of observability by incorporating higher-order terms,
thereby providing a more comprehensive understanding of the observability properties of nonlinear systems.
Unlike existing approaches, this method offers a new solution to homological equations, allowing for a broader
application to both linearly observable and linearly unobservable systems. The study focuses on the quadratic
observability normal form, outlining its characteristics in different scenarios and providing a deeper analysis
of system dynamics that were previously inaccessible through traditional means.

A key contribution of this research is the application of the quadratic observability normal form to the
modeling and analysis of a nonlinear cardiovascular system. The cardiovascular system is a complex, nonlin-
ear system that is not fully observable using standard linear techniques. By transforming the cardiovascular
model into a quadratic observability normal form, the research demonstrates how this representation facili-
tates the design of a sliding mode observer (SMO) capable of estimating unobservable state variables. This
transformation is critical for detecting faults such as mitral and aortic valve dysfunctions, which are significant
risk factors for cardiovascular diseases. The observer is designed to overcome the limitations of conventional
methods, allowing for accurate state reconstruction even in the presence of observability singularities.

The practical significance of this approach is highlighted through numerical simulations, which show that
the sliding mode observer can effectively detect and isolate cardiovascular anomalies. The results indicate
that the proposed observer is capable of reconstructing system dynamics under various fault conditions, offer-
ing a less invasive, cost-effective, and efficient alternative for monitoring cardiovascular health. This research
not only advances the theoretical understanding of observability in nonlinear systems but also provides a
valuable tool for clinical decision support in cardiology.

The thesis is organized as follows: Section 2 introduces the quadratic equivalence of two systems mod-
ulo an output injection, leading to the formulation of homological equations. Sections 3 and 4 explore the
general cases of linearly observable and linearly unobservable systems, respectively, presenting the necessary
conditions for transforming a given system into its quadratic observability normal form. Section 5 applies
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these findings to the design of a sliding mode observer for a nonlinear cardiovascular model, providing both
theoretical insights and practical examples. Finally, the effectiveness of the proposed methods is validated
through numerical simulations and compared with existing clinical data.

By combining advanced mathematical techniques with practical observer design, this thesis aims to bridge
the gap between theoretical control methods and their application to real-world biomedical systems. The
results demonstrate the potential for wider applications in fields where precise state estimation and fault
detection are crucial, setting the stage for future research in nonlinear system observability and control.

2 Problem formulation

The problematic to be addressed the challenge of analyzing and controlling nonlinear multi-input multi-
output (MIMO) systems, with a specific focus on observability in complex systems. Traditional methods
often struggle with nonlinearities and the complexity of multi-input and multi-output configurations. This
thesis introduces a novel method for higher-order observability normal form, leveraging the second-order
Poincaré normal form to resolve homological equations. The research aims to advance the theoretical frame-
work of observability by outlining the characteristics of quadratic observability normal forms, both in linearly
observable and unobservable scenarios.

The core problem revolves around the development and application of this novel method to the cardio-
vascular system (CVS), which presents both normal and pathological conditions within systemic circulation.
The challenge is to accurately simulate the CVS through a quadratic normal form representation and to im-
plement a Sliding Mode Observer (SMO) for effective state estimation and anomaly detection. This includes
identifying valvular heart diseases that are critical risk factors for cardiovascular health.

This research provides a significant advancement in nonlinear observability theory, offering a novel ap-
proach to resolving complex systems through quadratic observability normal forms. The application to
cardiovascular system modeling aims to enhance diagnostic capabilities and improve the detection of critical
conditions, potentially leading to better management of cardiovascular diseases.

3 Objectives of the thesis

3.1 General objective

The main objective of this research is to develop analysis and design of observer-based virtual sensors through
of the transformation to the quadratic observability normal form of Multiple-Input Multiple-Output (MIMO)
systems. Application to the monitoring of cardiovascular system dynamics.

Unlike of the quadratic observability normal for of Single-Input Single-Output (SISO) systems, for or
Multiple-Input Multiple-Output (MIMO) systems, there is no straightforward, universally accepted "observ-
ability normal form". The reasons include the increased dimensionality and the more complex interdependen-
cies between inputs and outputs in MIMO systems. The observability normal forms simplify the analysis and
design by transforming the system into a specific canonical form that makes it easier to analyze observability
properties. However, for MIMO systems, the situation is more complex due to the presence of multiple inputs
and outputs. The following research objectives will be achieved:
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3.2 Specific objectives
• To select the model of the cardiovascular system.

• To study the operation and dynamics of the model of the cardiovascular system to design a appropriate
observer.

• Transformation of MIMO nonlinear systems to the observable quadratic normal form, with application
to the cardiovascular system model.

• To perform observability using observable normal form of nonlinear systems.

• Structural observability analysis by using the system dynamics.

4 Main contributions
The main contribution of this thesis is develop and implement a methodology for transforming nonlinear
Multiple-Input Multiple-Output (MIMO) systems into a quadratic observability normal form, thereby ad-
vancing the analysis and design of observer-based virtual sensors for monitoring complex systems such as
cardiovascular dynamics. This involves extending existing methods for Single-Input Single-Output (SISO)
systems has been done in ([10]) to MIMO systems, addressing the increased complexity and interdependence’s,
and demonstrating the utility of this approach through theoretical developments and numerical examples.
The scientific contributions of this thesis are listed as follows:

• Development of a novel methodology: A significant contribution is the extension of the quadratic
observability normal form methodology to nonlinear multi-input multi-output (MIMO) systems, which
has not been addressed in existing literature. This builds on and refines existing approaches, particularly
those outlined in previous works such as ([10]).

• Extension of existing methods: Expansion of methods originally designed for SISO systems to
accommodate the concept of observability normal form of MIMO systems, providing a more com-
prehensive framework for simplify the analysis and design by transforming the system into a specific
canonical form that makes it easier to analyze observability properties and design observer-based virtual
sensors.

• Resolution of homological equations: The thesis develops a novel approach to solving homological
equations in the second-order Poincaré normal form of observability. This approach enhances the
resolution of these equations, contributing new insights into the quadratic observability normal form
for nonlinear systems.

• Characterization of quadratic observability: Detailed analysis of the quadratic observability
normal form in both linearly observable and linearly unobservable scenarios, enhancing the theoretical
foundation for observability analysis.

• Illustrative numerical examples: The thesis includes practical applications and numerical examples
demonstrating how the proposed methodology can be applied to real-world systems, such as cardiovas-
cular dynamics, thereby validating the approach and showcasing its practical utility.

• Development of a new model of the cardiovascular system: The research presents a new
mathematical representation of the cardiovascular system that leverages novel transformations to place
the system into a quadratic observability normal form, demonstrating how the proposed methodology
can be applied. This contribution makes it easier to analyze observability properties and design of
observers for cardiovascular system.
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• Observer based virtual sensor design: By transforming the cardiovascular system model into the
quadratic observability normal form, the research facilitates the design of observer-based virtual sensors.
These sensors are crucial for monitoring cardiovascular dynamics and investigating the impact of various
pathologies. These contributions not only advance the theoretical understanding of observability in
complex MIMO systems but also provide practical tools and methodologies for monitoring and analyzing
cardiovascular system dynamics.

5 Outline of the thesis
This thesis consists of four principal chapters. The following paragraphs gives more details about the content
of each part :

Chapter 1 introduces key concepts of observability in nonlinear systems and the role of the Poincaré
normal form in their analysis. It covers the Poincaré linearization technique, which approximates nonlinear
systems with simpler linear models using polynomial methods. Additionally, it discusses higher-order stabil-
ity forms and the quadratic observability normal form for SISO systems. Real-world examples, such as the
Lorentz system, are provided to illustrate the importance of these theoretical concepts in system analysis
and control.

Chapter 2 focuses on applying the quadratic observability normal form to nonlinear multi-output sys-
tems. It begins by studying this form, distinguishing between linearly observable and unobservable cases,
and then extends these concepts to MIMO systems, exploring both observable and unobservable situations.
It also introduces the design of sliding mode observers for these systems. Illustrative examples demonstrate
the practical utility of the quadratic observability normal form for system analysis and observer design in
real-world MIMO scenarios.

Chapter 3 is dedicated to applies the concepts of quadratic observability normal form to the cardio-
vascular system (CVS). It begins with an introduction to the anatomy and physiology of the cardiac cycle,
including common valve pathologies. The chapter then presents a model of the cardiovascular system, de-
tailing its equivalent electric model, elastance, and the underlying mathematical framework. In addition,
the quadratic normal form of the CVS is discussed, alongside validation techniques for this model. An
observability analysis is conducted, assessing the observability of the cardiovascular system and leading to
the design of sliding mode observers specifically tailored for the CVS. The chapter concludes by emphasizing
the significance of these methods in improving the understanding and monitoring of cardiovascular dynamics.

Chapter 4 provides the methodologies for diagnosing and detecting anomalies within the cardiovascular
system. It begins with an introduction to the principles of diagnostic techniques and fault detection method-
ologies, including a classification of various methods used in the field. The chapter then expands on the
cardiovascular model to enhance anomaly detection, introducing a residual generator specifically designed
for detecting cardiovascular anomalies. Simulation results are presented to demonstrate the effectiveness of
the proposed methods, with scenarios including mitral regurgitation, aortic regurgitation, and simultaneous
occurrences of both conditions. These simulations illustrate the application of the diagnostic methodologies
in identifying and understanding cardiovascular anomalies.

xxi



Chapter 1
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1.1 Introduction
This chapter presents the fundamental concepts of observability and observer design for nonlinear systems,
with a particular focus on the sliding mode observer. It also examines the Poincaré linearization technique,
which relies on polynomial methods to simplify the analysis of nonlinear systems by approximating them
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with linear or higher-order models. Additionally, it introduces the quadratic normal form of observability
for SISO systems, providing a detailed view of observability near singularities. These theoretical principles
are illustrated through practical examples, notably the Lorenz system, highlighting the relevance of these
approaches for the analysis and control of complex dynamic systems.

1.2 Basic properties of observability and nonlinear systems

In control theory, observability characterizes the property of being able to recover (statically or dynamically)
by a combination of measurements and their derivatives all the quantities of a system. Checking the observ-
ability of a system is crucial for determining whether the internal state of a system can be inferred from its
outputs over time, given certain inputs. The rank test of the observability matrix is one of the most common
methods for this purpose. Here’s a step-by-step explanation of how to apply the rank test in linear and
nonlinear systems.

1.2.1 Linear systems

We recall here the classic results of observability and synthesis of observers for linear systems such as can be
found in [42, 104].

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1.1)

where x ∈ Rn is the state vector, u ∈ Rm is input, y ∈ Rp represents the measured output vector. Matrices
A, B and C are real and of appropriate dimensions.

The observability property of such a system corresponds to the fact that the state x(t) can be determined
on any interval [to, t1] from the knowledge of u(t) and y(t) and can be formalized as follows

Definition 1.2.1 [42, 104] The system (1.1) is observable if, given an instant t0, there exists a finite instant
t1 such that knowledge of y(t0, t1) and u(t0, t1) uniquely determines the state x(t0) = x0, whatever the system
input. The observability matrix O is constructed using the system matrices A and C. For an n-dimensional
state vector, the observability matrix is given by:

O =


C
CA
CA2

...
CAn−1

 .

To determine if the system is observable, compute the rank of the observability matrix O.

Definition 1.2.2 The system (1.1) is observable if and only if:

rank(O) = n.

We then say that the pair (C,A) is observable. If the rank is less than n, the system is not fully observable.
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1.2.2 Nonlinear systems.

In the context of nonlinear systems, the problem of observability of nonlinear systems is complicated, since
observability in this case depends on the applied input. The observability of nonlinear systems is defined
in terms of indistinguishability. A synthesis on the question is given in [30]. In the following, the different
definitions of observability will be given considering the nonlinear system described by the following equations:

Σ

{
ẋ(t) = f(x(t))
y(t) = h(x(t)) = [h1(x(t)), h2(x(t)), · · · , hp(x(t))]T (1.2)

with x ∈ Rn is the state vector, u ∈ Rm is input, y ∈ Rp represents the measured output vector. Matrices
A, B and C are real and of appropriate dimensions.

1.2.2.1 Observability and range conditions

Definition 1.2.3 (Distinguishability [30, 29, 66, 100]): Two initial states x(t0) = x1 and x(t0) = x2 such
that x1 ̸= x2 are said to be distinguishable for the system (1.2), if ∀t ≥ t0, y1(t) ̸= y2(t), we have the
corresponding outputs y1(t) and y2(t) verify y1(t) ̸= y2(t).

Definition 1.2.4 (Indistinguishability [30, 29, 66, 100]): Two initial states x(t0) = x1 and x(t0) = x2 are
said to be indistinguishable for the system (1.2) if ∀t ∈ [t0, t1], the corresponding outputs y1(t) and y2(t) are
the same for both states over any finite time interval , for every possible input u(t) of the system.

It is now possible to define the observability of a system at a point, and by extension, to define an observable
system.

Definition 1.2.5 (Observability [30, 29, 66, 100]): The system (1.2) is observable at x0 if x0 is distinguish-
able from all x ∈ Rn. The system (1.2) is observable if ∀x0 ∈ Rn , x0 is distinguishable

Definition 1.2.6 (Local observability [30, 29, 66, 100]): The state x0 is locally observable if there exists an
open neighborhood V of x0 such that for any open neighborhood U of x0 contained in V , IU (x0) = {x0}; and
the system (1.2) is said to be locally observable if for any x ∈ U of Rn, IU (x) ∩ V (x) = x.

In the context of nonlinear systems, local observability is important concept for understanding how well
the state of a system can be inferred from observations, particularly when the states are close to each other.
The local observability ensures that the trajectories of the system do not need to deviate much from the
initial conditions to distinguish two points. This notion of observability becomes locally weak when we are
only interested in the discernibility of initial states close to each other. A system is locally observable at a
point x0 if the observability space at x0 spans the entire space of possible output changes. Specifically:

Definition 1.2.7 The observability space (dO(x0))(i.e. evaluated at x0) characterizes the local observability
at x0 of the system (1.2). The system (1.2) is said to satisfy the condition of observability rank at x0 if

dim dO(x0) = dimX = n (1.3)

The system (1.2) satisfies the observability rank condition if , for all x ∈ Rn

dim dO(x) = dimX = n (1.4)

• Rank condition
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Let the observability space O be generated on Rn by all the one-forms associated with h and the derivatives
of h. Therefore, according to (1.2), we have:

y(1)(t) =
dh(x(t))

dt
=
∂h(x(t))

∂x
· dx(t)
dt

=
∂h(x(t))

∂x
· f(x(t)) = L1

fh(x(t)) (1.5)

with L1
fh(x(t)) is the Lie derivative of the function h with respect to the function f at the first order. Indeed,

we define the successive Lie derivatives of the function h with respect to the function f as:

Lk
fh(x(t)) = Lf [L

k−1
f h(x(t))];with L0

fh(x(t)) = h(x(t)) = y(t) (1.6)

In the same way, we can write :

y(2)(t) = d2h(x(t))
dt2 = d

dt

[
dh(x(t))

dt

]
= d

dt

[
L1
fh(x(t))

]
=

∂[L1
fh(x(t))]
∂x · dx(t)

dt =
∂[L1

fh(x(t))]
∂x · f(x(t)) = Lf

[
L1
fh(x(t))

]
= L2

fh(x(t))

From which we can deduce that property (1.2) is also verified at order 2 and subsequently, it is easy to verify
it up to order n:

y(n)(t) = Ln
fh(x(t)) ∀n ∈ N

We call the rank of observability, denoted rank(O), we can then verify

rang


y

dy(1)

dy(2)

...
dy(n−1)

 = rang


h

Lfh(x)
L2
fh(x)

...
L
(n−1)
f h(x)



Note that the definitions of observability given above are all for free systems (i.e. independent of the
system’s input), but in practice, all systems are controlled and admit possible inputs. In this context, the
concept of observability is defined in terms of inputs which, as for the state of free systems, is based on the
principle of indistinguishability.

Definition 1.2.8 (Universal input [30, 29, 66, 100]): Given the system (1.2), the input u (t) is said to be
a universal input on the time interval [0, t] if it distinguishes any pair of different initial points {x0, x̃0} can
be discerned by the outputs on the interval [0, t], that is, if there exists τ ∈ [0, t] such that h (χu(t, x0)) ̸=
h (χu(t, x̃0)).

In other words, the universality of an input means the possibility, for this given input, of discerning all
pairs of initial states.

Definition 1.2.9 Singular inputs: A non-universal input will be called a singular input.

When there is no singular input among the set of admissible inputs Rm, then any pair of initial states
are distinguishable. This property is called observability for any input.

Definition 1.2.10 (Observability for any input [100]): A system for which all admissible inputs valued in
Rm are universal is said to be observable for any input (and we will subsequently say uniformly observable).
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1.3 Design of observers
The application of state observers, also known as software sensors, in system control is a trend that continues
to grow. Initially, the purpose of the observation was to estimate quantities that were difficult to measure,
such as temperature fluctuations in chemical reactions, pressure variations in fluid dynamics, or rotor fluxes
in an asynchronous machine, to enhance control performance. However, state observers are now employed for
a variety of purposes such as senseless control, fault tolerant control, parameter identification and estimation.

This section focuses on the presentation of overview of the state estimation principle and the synthesis of
observers for of linear and nonlinear systems.

1.3.1 State estimation principle
Definition 1.3.1 State estimation involves the process of estimating the internal state of a system based on
available measurements and a mathematical model. It is crucial for enabling effective control when direct
measurement of all states is not feasible.

Definition 1.3.2 A state observer is a mathematical algorithm that is used to estimate (reconstruct) the state
x of a dynamic system, from the available measurements (outputs y) and inputs u, based on a representative
model of the system.

1.3.2 Luenberger observer
Theorem 1.3.1 [69] If a linear invariant system is observable, then there exists an observer of the form:

˙̂x = Ax̂+Bu+K(y − Cx̂) = (A−KC)x̂+Bu+Ky (1.7)

In this case, the eigenvalues of the matrix A−KC can be arbitrarily placed in the left half-plane, by choosing
the matrix K of dimension n× p

The dynamics of the observation error x̃ = x− x̂ is:

˙̂x = (A−KC)x̃ (1.8)

The same matrix A−KC appears in the dynamics of the observed state and in that of the error. Therefore,
if the observer is stable, the error x̃ tends to 0 asymptotically (limtt→+∞x̃ = 0). In a Luenberger type
observer, the choice of the matrix K is said by pole placement (of the observer, therefore of the eigenvalues
of the matrix A−KC). The matrix K is constant in this case.

1.3.3 Kalman filter
The Kalman filter is a linear quadratic estimator that estimates unknown variables of a system from (possibly
noisy) measurements. It is named after one of its first developers Rudolph E. Kalman [43, 44].

The Kalman filter finds its applications in a wide variety of technological fields. We will restrict our
presentation to its application as a state observer in a deterministic context. In this case, the Kalman filter
is an optimal observer, in the sense that its synthesis constitutes a dual version of the search for a state
feedback by quadratic linear control.

For linear systems, the observation structure by Kalman filtering is the same as that of a Luenberger type
observer:

˙̂x = Ax̂(t) +Bu(t) +K(t)[y(t)− Cx̂(t)] (1.9)
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The originality of the filter is in the calculation of the gain matrixK(t), which is not (necessarily) constant,
which makes the Kalman filter better suited to time-varying systems. The formula for the observer gain is:

K(t) = P (t)CTR−1 (1.10)

where P (t), the observation error covariance matrix, is the solution to the Riccati differential equation

Ṗ (t) = AP (t) + P (t)AT +Q− P (t)CTR−1CP (t);P (0) = Po (1.11)

The matrices Q, R and P0 are positive definite symmetric matrices. In the context of state reconstruc-
tion, they are considered as weighting matrices that are used to adjust the observer dynamics, if we increase
all the coefficients of Q, the reconstruction dynamics becomes faster, and if, conversely, we increase all the
coefficients of R, the filtering of measurement noise becomes more important, and the observation dynamics
slows down. There are no systematic methods to calculate these two matrices, their adjustment requires
expertise on Kalman filtering and on the observed system.

The matrix P0 plays a role on the observer dynamics at the start of the algorithm; large values of
its coefficients mean that a large initial error is expected, which generates faster observation dynamics at
start-up, and vice versa.

1.3.4 Extended Kalman filter
For nonlinear systems, there is an extended (local) version of the Kalman filter, based on the linearization of
the system. Let us the observation error:

˙̃x = F (x, u)− f(x̂, u)K(·)[h(x)− hx̂] (1.12)

The Taylor series expansion of this equation around x̃ = 0, by evaluating the Jacobian around x̂, gives

˙̃x = [A(t)−K(t)C(t)]x̃+ δ(x̃, x, u) (1.13)

where
A(t) =

∂f

∂x
(x̂(t), u(t);C(t) =

∂h

∂x
(x̂(t)) (1.14)

and
δ = f(x, u)− f(x̂, u)−A(t)x̃−K(t)[h(t)− h(x̂)− C(t)x̃] (1.15)

The extended Kalman filter is widely used in industry for nonlinear systems.

On the other hand, the discrete-time Kalman filter algorithm consists of two main steps: Prediction and
Correction. Here’s the algorithm for the discrete version [48]:
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Figure 1.1: Discrete-time Kalman filter algorithm.

1.3.5 High-gain observer

A high-gain observer is a type of state observer designed to provide robust state estimation for dynamic
systems, especially in the presence of disturbances and measurement noise. It achieves high accuracy in state
estimation by employing large observer gains. One of the most comprehensive and satisfactory contributions
to the theory of nonlinear observers has been provided by [28]. It belongs to the family of high-gain observers.
The authors demonstrate that, with an appropriate change of coordinates, the states of the nonlinear system
can be tracked not only locally but also globally in an asymptotic manner. The tuning or calibration of this
type of observer is done by adjusting a single parameter, called the observer gain, determined by solving a
Lyapunov equation.

High-gain observers essentially require the existence of a globally defined change of coordinates that satis-
fies the Lipschitz condition. If the system is uniformly observable for any input, then a global and convergent
observer can be constructed for a nonlinear system with inputs, also referred to as a non-autonomous system.

This section presents the methodology and the necessary conditions to develop a high-gain observer,
whose objective is to estimate the states of a control-affine nonlinear system. To formulate the high-gain
observer, we start from the general form of control-affine nonlinear systems:

ẋ(t) = f(x(t)) +
m∑
i=1

ui(t)gi(x(t))

y(t) = h(x(t))
(1.16)

where x(t) ∈ Rn, ui(t) ∈ Rm, i = 1, . . .m where m it is the number of inputs y(t) ∈ Rp, f(x(t)) ∈ Rn,
and gi(x(t)) ∈ Rn these last two are vector fields.

The design of the observer is based on the following hypothesis

• The nonlinear system is uniformly observable.

7
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• The observability matrix is of rank n at a point x0, i.e., it is invertible.

• The matrix ϕ(x) =


h(x(t))
Lfh(x(t))

...
Ln−1
f h(x(t))

 is a diffeomorphism.

Given the previous characteristics, it is possible to perform a change of coordinates or a transformation
of the original system where:

z(t) = ϕ(x(t)) =
[
h(x(t)) Lfh(x(t)) . . . Ln−1

f h(x(t))
]T

(1.17)

The notation Lf (·) represents the Lie derivative of a real function evaluated at f(x(t)). By definition,
the Lie derivative is:

Lfh(x(t)) =
∂h(x(t))

∂x
f(x(t)) =

n∑
i=1

∂h(x(t))

∂x
fi(x(t)) (1.18)

Such a coordinate transformation ϕ(x(t)) defines a diffeomorphism that transforms the nonlinear system
into a triangular form as

ż(t) = Az(t) + ψ(z(t)) +
m∑
i=1

ϕi(z(t))ui(t)

y(t) = Cz(t)
(1.19)

where
z1 = h(x(t)), z2 = Lfh(x(t)), z3 =, . . . , zn = Ln−1

f h(x(t)) (1.20)

A =


0 1 0 0
... . . . 0 0

0
. . . 0 1

0 . . . 0 0

 ψ(z(t)) =


0
...
0

Ln
fh(x(t))


C =

[
1 0 . . . 0

]
(1.21)

The elements of ϕi(z(t)) are:

ϕ(z(t)) = ϕ1(z1(t))
ϕ(z(t)) = ϕ2(z1(t)), z2((t))

...
ϕn(z(t)) = ϕn(z1(t), . . . , zn−1(t))

(1.22)

This transformation allows us to return to the original coordinates, x(t) = ϕ−1(z(t)). The observer proposed
by [28] for the estimation of the transformed states has the following form:

˙̂z(t) = Aẑ(t) + ψ(ẑ(t)) +

m∑
i=1

ϕi(ẑ(t))ui(t)S
−1
θ CT (Cẑ(t)− y(t)) (1.23)

where the symbol ˆ signifies the estimated value. As can be seen, the observer is just a copy of the
transformed system, plus a correction term that depends on the measured output of the system. The
matrixSθ is the solution to the Lyapunov equation:

8



1.3. Design of observers

θSθ +ATSθ + SθA = CTC (1.24)

where the parameter θ > 0 is called the observer gain. This parameter determines the convergence rate
of the estimation and is set by the designer. The form of the gain matrix Sθ for a second-order system is
presented below:

Sθ =

[
1
θ − 1

θ2

− 1
θ2

2
θ3

]
(1.25)

In general, the coefficients of Sθ are of the form:

Si,j =
Si,j

θi+j−1
, 1 ≤ i, j ≤ n (1.26)

In the original coordinates, the system from Eq. (1.23) is rewritten as follows:

˙̂x(t) = f(x̂(t)) + g(x̂(t))u(t) +
[
∂ϕ(x̂(t))

∂x̂

]−1

S−1
θ CT [y(t)− ŷ(t)]

ŷ = Cx̂(t)
(1.27)

The structure of the observer consists of a copy of the mathematical model of the system, plus a correction
term where ∂ϕ(x(t))

∂x is the Jacobian matrix of ϕ(x(t)), and ϕ(x̂(t)) = ϕ(x(t))
∣∣
x(t)=x̂(t)

. To verify that the

system is observable, the matrix ∂ϕ(x(t))
∂x must be of full rank.

1.3.6 Sliding mode observers
The main purpose of this section is to briefly introduce the types of the sliding mode observer and to demon-
strate the main properties of this observers. Among the different types of observers, sliding mode observers
(SMO) stand out for their robustness in the presence of system uncertainties and external perturbations.
Sliding mode observers are based on the principle of sliding mode control, which consists of applying a high-
frequency switched control signal to drive the system states towards a predefined sliding surface. After the
system reaches this surface, the dynamics is governed by a reduced-order system, less sensitive to uncertain-
ties and disturbances. This property makes SMO particularly suitable for systems with nonlinear dynamics
or time-varying parameters [102].

The design and classification of sliding mode observers can be organized based on various criteria, such as
the system model (linear or nonlinear), the type of sliding surface, or the observer structure. Some common
classifications include:

The following information is applicable to both linear [25] and nonlinear systems [76], as the methods
discussed can be adapted to the characteristics and dynamics of either system type. High-order sliding mode
observers, discrete sliding mode observers, and adaptive sliding mode observers are versatile techniques that
enhance performance in a wide range of applications, regardless of the linearity or nonlinearity of the system.

• High-Order Sliding Mode Observers (HOSMOs)
Traditional sliding mode observers can suffer from chattering, a phenomenon caused by high-frequency
oscillations near the sliding surface. High-order sliding mode observers address this issue by incorporat-
ing higher-order terms into the observer design, leading to smoother estimates and reduced chattering.

• Discrete Sliding Mode Observers (DSMOs)
These observers are designed for discrete-time systems, which are particularly relevant in digital con-
trol applications. The observer operates based on sampled data, making it ideal for systems where
continuous measurements are not available.
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Figure 1.2: Classification and Types of Sliding Mode Observers.

• Adaptive Sliding Mode Observers
These observers adjust their parameters in real time to handle uncertainties or changes in system dy-
namics. This adaptability improves performance in systems with time-varying or uncertain parameters.

In the following section, the structure for nonlinear systems is presented, excluding linear ones, since the
analysis and techniques discussed in this thesis are specifically designed to address the unique characteristics
of nonlinear systems, which are the primary focus of this work.

1.3.6.1 Nonlinear sliding mode observer

Walcott and Zak made separate early contributions to this topic, as did Slotine et al. We assume the sliding
mode observer to have the form [95, 97].

ˆ̇x1 = −α1e1 + x̂2 − k1sign(e1)
ˆ̇x2 = −α2e2 + x̂3 − k2sign(e1)
...
ˆ̇xn = −αne1 + f̂ − knsign(e1)

(1.28)

where e1 = x̂ − x1, f̂ is an estimate of f(x, t) and the constant variable αi are chosen as for a classical
Luenberger observer to ensure asymptotic error of a corresponding linearised system, where ki = 0. The
resulting error dynamics can be written:

ė1 = −α1e1 + e2 − k1sign(e1)
ė2 = −α2e1 + e3 − k2sign(e1)
...
ėn = −αne1 +∆f − knsign(e1)

(1.29)

where = f̂ − f is assumed bounded and
kn ≥ |∆f | (1.30)

10



1.3. Design of observers

The sliding condition is defined by (d/dt)(e1)
2 < 0 is satisfied in the region

e1 + α1e1 if e1 > 0
e2 ≥ −k1 + α1e1 if e1 < 0

(1.31)

form ė1 = −α1e1 + e2 − k1sign(e1), when a sliding mode is attained on e1 = 0 with

e2 − k1sign(e1) = 0 (1.32)

and consequently

ė1 = e3 − k2

k1
e2

...
ėn = ∆f − kn

k1
e2

(1.33)

The next significant advancement in the development of sliding mode observers for non-linear systems is
found in the article by Drakunov and Utkin [20], where the concept of equivalent injection was introduced
for observer design. Following this, Boukhobza et al. [9] applied the output injection approach proposed by
Krener and Isidori [49] to design a sliding mode observer. This same team also developed a sliding mode
observer for non-linear systems in triangular input form in Barbot et al.[6]. These systems were initially
explored in the foundational work by [20] and are noteworthy because they enable the development of an
observer for nonlinear systems in triangular input form.

1.3.6.2 Sliding mode observer in the triangular input form

Considering the system presented in [6], the authors in [20, 9] and [6] establish the following result

˙̂
ξ1 = ξ̂2 + ḡ1(ξ1, u) + λ1sign(ξ1 − ξ̂1)
˙̂
ξ2 = ξ̂3 + ḡ2(ξ1, ξ2, u) + λ2sign(ξ̃2 − ξ̂2)
...
˙̂
ξn−1 = ξ̂n + ḡn−1(ξ1, ξ̃2, · · · , ξ̃n−1, u) + λn−1sign(ξ̃n−1 − ξ̂n−1)

ξ̇n = f̄n(ξ1, ξ̃2, · · · , ξ̃n) + ḡn(ξ1, · · · , ξ̃n, u) + λnsign(ξ̃n − ξ̂n)

(1.34)

where

ξ̃i = ξ̂i + λi−1sign(ξi−1 − ξ̂i−1) (1.35)

for i = 2, ·, n1, the function sign(.) is determined using filtered versions of the argument. The manifolds
are approached sequentially, and ei = ξ̃i− ξ̂i converges to zero if ej = ξ̃j− ξ̂j with j < i has already converged
to zero. This sequential consideration of a series of first-order dynamics is evident when forming the error
dynamics for ei = ξ − ξ̂i:

ė1 = e2 − λ1sign(ξ1 − ξ̂1)

ė2 = e3 + ḡ2(ξ1, ξ2, u)− ḡ2(ξ1, ξ̃2, u)− λ2sign(ξ̃2 − ξ̂2)
...
ėn−1 = ξ̂n − ḡn−1(ξ1, ξ̃2, . . . , ξ̃n−1, u)− λn−1sign(ξ̃n−1 − ξ̂n−1)

ėn = f̄n(ξ1, . . . , ξn)− f̄n(ξ1, ξ̃2, . . . , ξ̃n) + ḡn(ξ1, ξ2, . . . , ξn−1, u)− ḡn(ξ1, . . . , ξ̃n, u)−
λnsign(ξ̃n − ξ̂n)

It can be shown that for sufficiently large λ1, the system reaches a sliding mode at e1 = 0 within a finite
time, which implies that
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e2 = λ1sign(ξ1 − ξ̂1)

together with 1.35 results in ξ̃2 = x2 . The dynamics of the observation error are then expressed as
follows:

ė1 = 0

ė2 = e3 − λ2sign(ξ̃2 − ξ̂2)
...
ėn−1 = ξ̂n − ḡn−1(ξ1, ξ2, . . . , ξ̃n−1, u)− λn−1sign(ξ̃n−1 − ξ̂n−1)

ėn = f̄n(ξ1, . . . , ξn)− f̄n(ξ1, ξ2, . . . , ξ̃n) + ḡn(ξ1, ξ2, . . . , ξn−1, u)

−ḡn(ξ1, . . . , ξ̃n, u)− λnsign(ξ̃n − ξ̂n)

(1.36)

Continuing in the same manner, it can be demonstrated that for sufficiently large λ2, a sliding mode is
achieved at e2 = 0 within a finite time, leading to the conclusion that

e3 = λ2sign(x̃2 − x̂2)

which results in x̃3 = x3. Continuing with the same methodology throughout the dynamics yields:

e1 = 0
e2 = 0
...
en−1 = 0

en = −λnsign(ξ̃n − ξ̂n)

It follows naturally that a sliding mode is ultimately achieved at en = 0 within a finite time.

1.3.6.3 High-order sliding mode observers

High-order sliding mode observers are advanced observers designed to mitigate the chattering phenomenon
commonly encountered in traditional sliding mode observers. By incorporating higher-order dynamics into
the observer design, they provide smoother state estimates and improved robustness against uncertainties
and disturbances.

Let’s visualize the structure of a high gain observer presented in [67]. Consider a system as

ẋ2 = −ax2 − bx1 + ku(t)
y = x1

(1.37)

Let the high gain observer be defined as

x̂1 = x̂2 +
α1

ϵ (y − x̂1)
˙̂x2 = −ax2 − bx1 + ku+ α2

ϵ2 (y − x̂1)
(1.38)

where α1 and α2 are positive values, and ϵ≪ 1.
By choosing the parameters:

h1 =
α1

ϵ
, h2 =

α2

ϵ2

the observer equations become:

˙̂x1 = x̂2 + h1(y − x̂1)
˙̂x2 = −ax2 − bx1 + ku(t) + h2(y − x̂1)

(1.39)
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1.3. Design of observers

where x̃ = x− x̂ represents the estimation error.
From equations (1.37) and (1.38), we obtain:

˙̃x1 = −h1x̃1 + x̃2
˙̃x2 = h2x̃1 − ax̃2

(1.40)

and:
y = x1

i.e.,
˙̃x = Ax̃,

where the matrixs are defined as:
A =

[
−h1 1
−h2 −a

]
, x̃ =

[
x̃1
x̃2

]
.

If the matrix A is Hurwitz, the error dynamics x̃(t) will decay exponentially. This behavior can be
expressed as:

∥x̃(t)∥ ≤ φ0∥x̃(t0)∥e−σ0(t−t0) (1.41)

where φ0 and σ0 are positive constants. Equation (1.41) shows that the precision of the convergence for
∥x̃(t)∥ depends on σ0, which is related to the smallest eigenvalue of the matrix A. When ϵ is reduced, the
values of h1 and h2 increase, leading to a smaller minimum eigenvalue of A. As the minimum eigenvalue
grows, the value of σ0 becomes larger, resulting in faster convergence of ∥x̃(t)∥. Consequently, the perfor-
mance of the high-gain observer improves the precision of the error decay significantly.

Super Twisting Sliding Mode Observer

A well-known second-order sliding mode algorithm that offer finite reaching time and is applicable for
sliding mode-based observation is the super-twisting algorithm. The STSMO reduces chattering by utilizing
a super-twisting algorithm. This observer achieves finite-time convergence of the estimation error while
providing smoother estimates [64, 91]. The proposed super-twisting observer has the form [91].

˙̂x1 = x̂2 + z1
ˆ̇x2 = f(t, x1, x̂2 + z2)

(1.42)

where x1 and x̂2 are the state estimates while the correction variables z1 and z2 are output error injections
of the form

z1 = λ
∣∣x1 − x̂1

∣∣1/2 sign(x1 − x̂1)
z2 = αsign(x1 − x̂1)

(1.43)

Considering that x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2 we obtain the equations for the errors.

˜̇x1 = x̃2 − λ
∣∣x̃1∣∣1/2 sign(x̃1)

˜̇x2 = F (t, x1, x2, x̂2)− αsign(x̃1)
(1.44)

where

F (t, x1, x2, x̂2) = f(t, x1, x2, u)− f(t, x1, x̂2, u) + ξ(t, x1, x2, y) (1.45)

Assuming the system states are bounded, the existence of a constant f+ is guaranteed, such that the
inequality ∣∣F (t, x1, x2, x̂2)∣∣ < f+ (1.46)
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holds for any possible t, x1, x2 and
∣∣x̂2∣∣ ≤ 2sup

∣∣x2∣∣.
Super Twisting Observer with Multiple Sliding Surfaces

By adding numerous sliding surfaces, this method expands on the super twisting method and achieves
resilience against many disturbance kinds. For a system that is explained by:

ẋ(t) = Ax(t) +Bu(t) + d(t) (1.47)

The observer can be defined with multiple sliding surfaces:

˙̂x(t) = Ax̂(t) +Bu(t) + L1 sgn(s1(t)) + L2 sgn(s2(t)) (1.48)

where s1(t) = y(t) − C1x̂(t) s2(t) = y(t) − C2x̂(t) are different sliding surfaces, and L1 and L2 are
gain matrices for each surface. This approach allows for enhanced robustness and adaptability to varying
conditions.

1.3.7 Characteristics of sing function approximation forms

The conventional sliding mode observer uses a sign (sgn) function to define its sliding mode surface [67, 98].
This binary switching characteristic of the sgn function contributes to the robustness of the SMO by forcing
the system into the sliding surface, but it can also induce chattering in the output signal. As shown in Figure
1.3, the sgn function, it is defined as follows:

sgn(x)

{
1 ifx ≥ 0
−1 ifx < 0

(1.49)

The equivalent value of the real speed signal must be recovered from the discontinuous signal with chat-
tering using a low-pass filter. The simplest filter to utilize is the first-order transfer function.

The sign function (1.49) can be approximated into a continuous form. There are two alternative ap-
proaches: saturation and sigmoid functions.

1 The saturation function can be described as follows

sat(x)
{

x
ε , where|x| ≤ ε

sng(x), where |x| > ε
(1.50)

2 There are many different types of sigmoid functions. Some of them are listed below

sigm1(x) =
2

1 + e−x/ε
− 1 (1.51a)

sigm2(x) =tanh(x/ε) (1.51b)

sigm3(x) =
2

π
arctan(x/ε) (1.51c)

sigm4(x) =
x

ε+ |x|
(1.51d)

sigm5(x) =
x/ε√

1 + (x/ε)2
(1.51e)

(1.51f)
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The results are standardized to fall between ±1. Changing the ε value affects the slope of the sat(x) and
sigm(x) functions. Figure 1.3a (from [98]) shows the comparison of the sign, saturation and sigmoid functions.
At the same time, Figure 1.3b shows the set of sigmoid functions. Despite the significant divergence between
the functions for certain values of ε for each function, the functions become very similar for this reason if
sigm4 is chosen it seems to be an optimal solution because the computations are the simplest.

(a) Comparison of sign, saturation and one of sigmoid functions.

(b) Set of sigmoid functions for the same.

Figure 1.3: Sign function approximations.
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1.4 Higher-order linearization and normal form

The basic idea behind this technique stems from the results of H. Poincaré’s research into the normalization
of differential equations. The concept of normal form has its origin in the work of Henri Poincaré, who
provided the first formal normalization theorem for a differential equation. The goal is to study the local
behavior of solutions near equilibrium points of differential equations by simplifying the system. The best
case scenario is to linearize the system, but this is not always possible due to the presence of resonant terms,
which create obstacles to linearization.

In addition to its simplicity of design and application, H. Poincaré’s linearization technique provides a
general proof of the efficacy or otherwise of linear designs, applied to systems that contain a general non-
linearity. This has motivated a large number of researchers in various fields to adopt this approach. In this
section, we set out H. Poincaré’s main results in this field.

In the following, we review the technique ([36], [103],[4], [3],[2]). Consider a nonlinear system:

ẋ = F (x), (1.52)

where x ∈ Rn and F (x) is a smooth vector field with an equilibrium point at the origin, f(0) = 0. The aim
of the Poincaré-Dulac normal form theory is to transform this system into a simpler, more structured form
via a series of coordinate transformations, which helps in analyzing the dynamics in a neighborhood of the
equilibrium.

The normal form computation relies on decomposing the vector field F (x) into its linear and nonlinear
parts:

ẋ = Ax+ f(x), (1.53)

where x ∈ Rn, A is the Jacobian matrix of F (x) evaluated at the origin, and f(x) contains the higher-order
nonlinear terms.

1.4.1 The resonances

Definition 1.4.1 ([36], [103],[4], [3],[2])
Let us consider a matrix A ∈ Rnxn with eigenvalues λi, (for 1 ≤ i ≤ n), the n−tuple λ(λ1, · · · , λn) is

resonant if among the eigenvalues there exists a relation of the form:

(k, λ) =
n∑

i=1

kiλi = λj (1.54)

where k = {k1, ...., kn}, ki ≥ 0 with
n∑

i=1

ki ≥ 2 such a relation is called a resonance.

The number r =
n∑

i=1

ki is called the order of the resonance.

We say that A is resonant (resp. λj is resonant), and number r =
n∑

i=1

ki is called the order of the resonance.

Otherwise, A is said to be non-resonant (resp. λj is non-resonant).

Example 1.4.1 The relation λ1 = 2λ2 is a resonance of order 2.
The relation 2λ1 = 3λ2 is not a resonance.
The relation λ1 + λ2 = 0, or equivalently λ1 = 2λ1 + λ2, is a resonance of order 3.
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Theorem 1 (Poincaré’s Theorem) ([3],[4]) If the eigenvalues of the matrix A are non-resonant, then the
non-linear system (1.52) can be reduced to the following linear system:

ż = Az

by a formal change of variable x = z + · · · . (The dots denote series starting with terms of degree two or
higher.)

Remark 1.4.1 ([3], [4]) If the n-tuple λ = (λ1, . . . , λn) is resonant, we will say that

xk1
1 . . . xkn

n ei

is resonant if λi = (k, λ),
n∑

i=1

ki ≥ 2 with ei a vector in the eigenbasis of A and xi are the coordinates with

respect to the basis ei.
For example, for the resonance λ1 = 2λ2, the unique resonant monomial is x22e1. For the resonance λ1+λ2 =
0, all monomials (x1x2)

kxses are resonant.

Example 1.4.2 The eigenvalues λ1 = 3, λ2 = 2. Let us see if there exist non-negative integers k1, k2 such
that λ1 = k1λ1 + k2λ2 where k1 + k2 = r ⇒ k2 = r − k1 , then

3 = 3k1 + 2(r − k1)
3 = k1 + 2r
k1 = 3− 2r

(1.55)

as r ≥ 2, then there are no integers such that λ1 = k1λ1+k2λ2. Similarly, let’s see if there exist non-negative
integers k1, k2 such that λ2 = k1λ1 + k2λ2 and k1 + k2 = r ⇒ k2 = r − k1 then

2 = 3k1 + 2(r − k1)
2 = k1 + 2r
k1 = 2− 2r

(1.56)

as r ≥ 2, then there are no integers such that λ1 = k1λ1 + k2λ2. Therefore the eigenvalues are non-resonant.

Example 1.4.3 The eigenvalues λ1 = 3, λ2 = 1. Let us see if there exist non-negative integers k1, k2 such
that

λ1 = k1λ1 + k2λ2 where k1 + k2 = r ⇒ k2 = r − k1

then
3 = 3k1 + (r − k1)
3 = 2k1 + r
2k1 = 3− r

(1.57)

as r ≥ 2, let us note that the only solution that satisfies the above equation is for r = 3, k = (0, 3) and i = 1.
Similarly, let’s see if there exist non-negative integers k1, k2 such that:

λ2 = k1λ1 + k2λ2 where k1 + k2 = r ⇒ k2 = r − k1

then
1 = 3k1 + (r − k1)
1 = 2k1 + r
2k1 = 1− r

(1.58)

as r ≥ 2, then there is no solution. Therefore, there is only the resonant term (1.57).
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1.4.2 Poincaré Normal Forms computation
The Poincaré transformation is briefly described here: we’re looking for a change of variable that preserves
the linear part (i.e. a change of variable tangent to the identity), which conjugates the initial field to a
"simpler" field. We proceed degree by degree.

Consider the differential equation (1.53), f(x) contains the higher-order nonlinear terms can be decom-
posed as:

ẋ = Ax+ f [r] (x) +O[r+1] (x) (1.59)

where

f [r] (x) = f2(x) + f3(x) + · · ·+O[r+1] (x) . (1.60)

To systematically simplify this system, we look for a transformation that preserves the linear part and reduces
the higher-order terms. This process is carried out degree by degree in the expansion.

Our goal is to remove all nonlinear terms in the first phase. This methodology is iterative: terms of degree
2 are eliminated first, followed by those of degree 3, and so forth. Every elimination will be carried out using
a matching transformation, which we’ll presume to be known beforehand. We assume that in the vicinity of
(xe), the field takes the following form:

x = z +Φ[r] (z) ,∀r ≥ 2 (1.61)

We briefly describe here the Poincaré transformation: we are looking for a change of variables that preserves
the linear part (thus a change of variables tangent to the identity) which conjugates the original vector field
to a "simpler" one. This is done degree by degree.

If we make the change of variables

x = z +Φ[2] (z) ,we obtain:

ẋ = (Id+DΦ[2] (z))ż = Az +AΦ[2] (z) + f2(z) + · · ·+O[r+1] (x) .,

for m ≥ 2, each term

fm(z +Φ[2] (z)) = fm(z) +Dfm(z)DΦ[2] (z) + · · ·

is at least of degree 3 in z, except for the contribution f2(z) of degree 2. Therefore, the previous equation is
rewritten, for the second-order term:

(Id+DΦ[2] (z))ż = Az +AΦ[2] (z) + · · ·+ f2(z) + · · ·+O[r+1] (x) .

For sufficiently small z, the matrix Id+DΦ[2] (z) is invertible, and its inverse is:

(Id+DΦ[2] (z))−1 = Id−DΦ[2] (z) +O[2] (x) ,

which finally gives:

ż = (Id−DΦ[2] (z) +O[2] (z))(Az +AΦ[2] (z) + f2(z) + · · ·+O[2] (z) ,

= Az +AΦ[2] (z) + f2(z)−DΦ[2] (z)Az + higher − degreeterms...

We then obtain the following equation for the second degree:
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1.4. Higher-order linearization and normal form

f̃2(z) = f2(z)− [Φ[2] (z)Az −AΦ[2] (z)],

where f̃2 is the "simplified" form of the field; the best possible simplification would obviously be f̃2 = 0.
It can be generalized and shown in the same way that for a change of variable x = z + Φ[k] (z) , the

equation obtained is:

f̃k(z) = fk(z)− [DΦ[k] (z)Az −AΦ[k] (z)].

Note that if fk is fixed, the fm for m < k are not modified: a supplementary term of fixed degree is
stabilized at each step, successively applying the changes of variables x = z + Φ[2] (z), then x = z + Φ[3] (z),
and so on.

The eigenvalues of the matrix A play a crucial role in determining the nature of the coordinate transfor-
mations.

Theorem 1.4.1 (Poincaré-Dulac Theorem [3],[4]) If the eigenvalues of the matrix A are resonant, then the
nonlinear system (1.59) can be reduced to the folowing system:

ż = Az + f̃ (1.62)

by a formal change of variable x = z + Φ[r] (z) (the r of degree two or higher), where all monomials in the
series f̃ are resonant.

Example 1.4.4 Case without resonances
Consider a dynamical system around the origin (0, 0) in R2 given by:{

ẋ1 = λ1x1 + x21
ẋ2 = λ2x2 + x1x2

where x = (x1, x2)
T , A is a linear matrix, and f(x) = (x21, x1x2)

T represents the nonlinear terms.
Suppose the matrix A has distinct eigenvalues, for example:

A =

(
λ1 0
0 λ2

)
with λ1 = 1 and λ2 = 1. This implies that the eigenvalues do not satisfy any resonance relations (e.g.,

k1λ1 + k2λ2 = λk for integers k1, k2, and k).
The normal form is constructed by eliminating non-resonant terms in f(x) using nonlinear transforma-

tions of the Poincaré.

We assume the following transformation:{
x1 = z1 + ϕ1(z1, z2)
x2 = z2 + ϕ2(z1, z2)

where {
ϕ1(z) = a1z

2
1 + a2z

2
2 + a12z1z2

ϕ2(z) = b1z
2
1 + b2z

2
2 + b12z1z2

Consequently {
ż1 = ẋ1 +Dϕ1(z1, z2)ż
ż2 = ż2 +Dϕ2(z1, z2)ż

(1.63)
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Chapter 1. Definitions and issues related to observability and the Poincaré normal form

by replacing ẋ1 , ẋ2, x1 and x2 in (1.64), we find{
ż1 = z1 + (1− a1) z

2
1 − a2z

2
2 − a12z1z2

ż2 = 2z2 − b1z
2
1 − b2z

2
2 + (1− b12) z1z2

And by choosing ϕ1(z) = z21 and ϕ2(z) = z1z2, we obtain a new system "the normal form" where the
non-resonant terms disappear. {

ż1 = λ1z1
ż2 = λ2z2.

Example 1.4.5 Case with resonances In the resonant case, the eigenvalues of A do satisfy a relation
of the form given above. This resonance condition implies that some nonlinear terms cannot be eliminated
through coordinate transformations. These terms must be retained in the normal form, and they play an
important role in the system’s long-term dynamics.

Consider a dynamical system around the origin (0, 0) in R2 given by:{
ẋ1 = λ1x1 + x21
ẋ2 = λ2x2 + x21 + x1x2

where x = (x1, x2)
T , A is a linear matrix, and f(x) = (x21, x

2
1 + x1x2x1x2)

T represents the nonlinear
terms.

Suppose the matrix A has distinct eigenvalues, for example:

A =

(
λ1 0
0 λ2

)
with λ1 = 1 and λ2 = 2. This implies that the eigenvalues satisfy the resonance relations (e.g., 0*λ1+λ2 =

λ2 and λ2 = 2λ2, and k).
The normal form is constructed by eliminating non-resonant terms in f(x) using nonlinear transforma-

tions of the Poincaré.

We assume the following transformation:{
x1 = z1 + ϕ1(z1, z2)
x2 = z2 + ϕ2(z1, z2)

where {
ϕ1(z) = a1z

2
1 + a2z

2
2 + a12z1z2

ϕ2(z) = b1z
2
1 + b2z

2
2 + b12z1z2

Consequently {
ż1 = ẋ1 +Dϕ1(z1, z2)ż
ż2 = ż2 +Dϕ2(z1, z2)ż

(1.64)

by replacing ẋ1 , ẋ2, x1 and x2 in (1.64), we find{
ż1 = z1 + (1− a1) z

2
1 − 3a2z

2
2 − 2a12z1z2

ż2 = 2z2 +Rz21 − 2b2z
2
2 + (1− b12) z1z2

And by choosing ϕ1(z) = z21 and ϕ2(z) = z1z2, we obtain a new system "the normal form" where the
non-resonant terms disappear. {

ż1 = λ1z1
ż2 = λ2z2 + z21 .
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1.5. Quadratic observability normal form for nonlinear SISO system

Remark 1.4.2 In this example, the only possible resonance is λ2 = 2λ1, which implies that the only poten-
tially resonant term is z21 in the direction z2. However, if R = 0 this resonance term is genetically zero.
This means that, even if the resonance theoretically exists between the eigenvalues, the corresponding term
in the nonlinearity is zero in the normal form of the system, as it cannot appear naturally from the original
equations.

The normal form theory helps in understanding the stability of the equilibrium by focusing on the essential
dynamics and ignoring the higher-order nonlinearities that do not affect the qualitative behavior.

1.5 Quadratic observability normal form for nonlinear SISO system

In this section, we recall a result from [10] this work focuses on the analysis of the singularities in the ob-
servability and detectability of nonlinear dynamic systems, specifically in the context of chaotic electronic
circuits. The research addresses the importance of these properties in the design and implementation of
synchronization systems, which are fundamental in applications such as cryptography, communication, and
signal processing. The results show that the singularities in observability and detectability can significantly
influence the success of synchronization in chaotic circuits. Specific conditions are established under which
effective synchronization can be achieved, and critical parameters that affect the stability of the system are
identified. For this reason, our work is based on the findings of this research.

In Boutat [10] a quadratic observability normal form for nonlinear SISO system is presented. The following
system is considered : {

ξ̇ = f(ξ) + g(ξ)u
y = h(ξ)

(1.65)

where ξ ∈ Rn is the state, y ∈ Rp is outputs, f(ξ) ∈ Rn are the vector fields such that f(ξ) : U ⊂ Rn −→
Rn are assumed to be real analytic, such that f(0) = 0.

Setting: A = ∂f
∂ξ (0) and B = g(0) have been developed in Taylor series around the equilibrium points

ξe = 0, with

rank (O(A, h)) = rank
([

h(ξ) Lfh(ξ) L2
fh(ξ) .... Ln−1

f h(ξ)
])T

= n− r

the system can be rewritten in the following form:{
ξ̇ = Aξ +Bu+ f [2](ξ) + g[1](ξ)u+O[3] (ξ, u)
y = Cξ

(1.66)

In (1.66), A is the Jacobian matrix of f of dimension n × n en xe = 0, f [2] (x, u) is a vector field in Rn

whose components are homogeneous polynomials of degree n on (x, u):

f [2] (ξ) =


f
[2]
1 (ξ)

f
[2]
2 (ξ)

...
f
[2]
n (ξ)


T

and g[1] (ξ) =


g
[1]
1 (ξ)

g
[1]
2 (ξ)

...
g
[1]
n (ξ)


T

such as ∀ i, 1 ≤ i ≤ n, f [2]i (ξ) and g[1]i (ξ) are respectively homogeneous polynomials of degree 2 and 1 in
ξ.
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Chapter 1. Definitions and issues related to observability and the Poincaré normal form

Definition 1.5.1 .

i) We call f [2] (ξ) the quadratic part of system (1.66).

ii) A quadratic transformation is defined by the following change of coordinates:

z = x+Φ[2] (x)

1.5.1 Quadratic equivalence modulo an output injection

The concept of quadratic equivalence modulo output injection serves as a powerful method to reduce the
inherent complexity of nonlinear dynamical systems. By providing a clearer normal form, this approach sig-
nificantly aids the analysis of fundamental properties such as observability and detectability. In particular,
this form of equivalence makes it possible to identify and investigate observability singularities - those critical
points where traditional observational methods fail to accurately determine the system state.

In nonlinear dynamical systems, these challenges are often related to phenomena such as state separation,
where the evolution of the system state makes it difficult to distinguish individual state components. In
addition, the presence of non-universal inputs - inputs that do not have a uniform influence across all oper-
ating conditions - can lead to unpredictable system responses, further complicating the task of monitoring
and reconstructing system behaviour. Quadratic equivalence modulo output injection provides a methodical
approach to addressing these issues, enabling a reduction in system complexity that allows analysts to isolate
specific vulnerabilities.

In addition, this equivalence plays an important role in providing a clearer distinction between observable
and unobservable state components. Further examination of the applications and implications of quadratic
equivalence, as explored in ([10], [41], [53], [71], [56], [40], [39], [34], [27], [60], [72], [57], [54], [85], [58], [55],
[59]), shows how this approach can enhance our understanding of system dynamics under various conditions.
These results demonstrate the utility of the method in improving both the robustness and reliability of
observability assessments, and offer a refined perspective on how system states can be effectively reconstructed
even when the state is not linearly observable.

Definition 1.5.2 The following system is considered ([10]):{
ż = Az +Bu+ f [2](z) + g[1](z)u+O[3] (z, u)
y = Cz

(1.67)

and { .
x = Ax+Bu+ f̄ [2](x) + ḡ[1](x)u+ β[2](y) + γ[1](y)u+O[3] (x, u)
y = Cx

(1.68)

i) We call f [2] (ξ) the quadratic part of system (1.66). We say that the system (1.67) having the quadratic
part f [2](z) + g[1](z)u is quadratically transformable modulo an output injection to the system(1.68)
having the quadratic part f̄ [2](x) + ḡ[1](x)u if there exists an output injection:

β[2](y) + γ[1](y)u

ii) We say that there exists a diffeomorphism of the form:

x = z − Φ[2] (z)
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1.5. Quadratic observability normal form for nonlinear SISO system

which transforms the quadratic part f [2](z) + g[1](z)u in the quadratic part

f̄ [2](x) + ḡ[1](x)u+
[
β[2](y) + γ[1](y)u

]
where Φ[2] (z) =

[
Φ

[2]
1 (z) , ......,Φ

[2]
n (z)

]T
,

β[2] (y) =
[
β
[2]
1 (y) , ......, β

[2]
n (y)

]T
and γ[1](y) =

[
γ
[1]
1 (y) , ......, γ

[1]
n (y)

]T
,

fori∈ [1, n] , Φ
[2]
i (z) and β

[2]
i (y) are respectively homogeneous polynomials of degree 2 en z and y, and the

γ
[1]
i (y) are homogeneous polynomials of degree 1 in y.

Proposition 1.5.1 System (1.67) is quadratically equivalent modulo an output injection to system (1.68),
if and only if the two following homological equations are verified:{

i) f̄ [2](z)− f [2](z) + β[2] (z1) = AΦ[2](z)− ∂Φ[2]

∂z Az

ii)
_
g
[1]
(z)− g[1](z) + γ[1](z1) = −∂Φ[2]

∂z B
(1.69)

Proof 1.5.1 [10] Consider these two systems (1.67) and (1.68 ), let us x = z−Φ[2] (z) then ẋ = ż− ∂Φ[2]

∂z ż,
which gives:

ẋ = Az +Bu+ f [2](z) + g[1](z)u+O3 (z, u)

−∂Φ[2]

∂z

(
Az +Bu+ f [2](z) + g[1](z)u+O[3] (z, u)

)
and by comparing the quadratic part with

ẋ = A
(
z − Φ[2] (z)

)
+Bu+ f̄ [2](z − Φ[2] (z)) + ḡ[1](z − Φ[2] (z))u

+ β[2](z1) + γ[1](z1)u+O[3]
(
z − Φ[2] (z) , u

)
we have:

Az −AΦ (z) + f̄ [2](z) + ḡ[1](z)u+ β[2](z1) + γ[1](z1)u
=

Az + f [2](z) + g[1](z)u− ∂Φ[2]

∂z (Az +Bu)

which implies:

i) f̄ [2](z)− f [2](z) + β[2] (z1) = AΦ[2](z)− ∂Φ[2]

∂z Az

f̄ [2](z) + β[2] (z1) = AΦ[2](z)− ∂Φ[2]

∂z Az + f [2](z)

ii)
_
g
[1]
(z)− g[1](z) + γ[1](z1) = −∂Φ[2]

∂z B
_
g
[1]
(z) + γ[1](z1) = g[1](z)− ∂Φ[2]

∂z B

1.5.2 Linearly observable case for nonlinear SISO system

Applying the normal form method to linearly observable systems allows the reduction of the system’s com-
plexity to its strict minimum, while respecting its topological properties. The first step consists in classically
normalizing the linear part of the system (1.66).

In Boutat-Baddas ([10]) a well known result on the linear observable normal form is presented.

Lemma 1.5.1 [12] Assume that the pair (A,C) of the system (1.66) is observable, (i.e. the linear observ-
ability matrix rank (O(A, h)) = rank

([
h(ξ) Lfh(ξ) L2

fh(ξ) .... Ln−1
f h(ξ)

])T
is full range n).
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Chapter 1. Definitions and issues related to observability and the Poincaré normal form

Under this lemma, then there exist a linear change of coordinates z = Tξ and a Taylor expansion which
transforms the linear part of the system (1.66) in the following form:{

ż = Aobsz +Bobsu+ f [2](z) + g[1](z)u+O[3] (z, u)
y = Cobsx

(1.70)

where:

Aobs =



a1 1 0 · · · · · · 0

a2 0 1 0
. . .

...
... 0 0

. . . . . . . . .
...

... · · ·
. . . . . . 0

an−1 0
...

... 0 1
an 0 · · · · · · · · · 0


, Bobs =



b1
b2
...
...
...
bn


and Cobs =


1
0
...
0



Remark 1.5.1 The system (1.70) is said to have its linear part in the observable Brunovsky form [14]
Moreover, the output is always taken equal to the first state component. Consequently, the diffeomorphism
(x = z − Φ[2] (z)) is such that Φ[2]

1 (z) = 0

Proposition 1.5.2 Under lemmma 1.5.1 the system (1.67), is quadratic equivalence modulo an output in-
jection to system (1.68), if and only if the following two homological equations are verified:{

i) f̄ [2](z)− f [2](z) + β[2] (z1) = AobsΦ
[2](z)− ∂Φ[2]

∂z Aobsz

ii)
_
g
[1]
(z)− g[1](z) + γ[1](z1) = −∂Φ[2]

∂z Bobs

(1.71)

where

∂Φ[2]

∂z Aobsz :=
(

∂Φ[2]

∂ξ Aobsz + · · ·+ ∂Φ[2]

∂ξ Aobsz
)T

and ∂Φ[2]

∂z is the Jacobian of Φ[2] for all 1 ≤ i ≤ n.

In solving the homological equations (1.71), the resonant terms are those that cannot be cancelled by the
right-hand side of the equations (1.71) and that appear in the left-hand side.

We can give two canonical forms, one favoring nonlinearity in the input by solving the homological
equation

_
g
[1]
(z)− g[1](z) + γ[1](z1) = −∂Φ[2]

∂z B

and the other favors non-linearity as it stands, solving the equation homological

f̄ [2](z)− f [2](z) + β[2] (z1) = AΦ[2](z)− ∂Φ[2]

∂z Az .

This is the last solution that we have chosen. Indeed, it allows us to treat indifferently systems with
command and without command.

Now, we can give the normal form associated to the QEMOI relation
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1.5. Quadratic observability normal form for nonlinear SISO system

Theorem 1.5.1 [12] There exists a quadratic diffeomorphism which transforms the quadratic part of system
(1.70) into the quadratic equivalence modulo an output injection:

ẋ1 = a1x1 + x2 + b1u+ β
[2]
1 (y) + γ

[1]
1 (y)u+

n∑
i=2

k1ixiu+O[3] (x, u)

ẋ2 = a2x1 + x3 + b2u+ β
[2]
2 (y) + γ

[1]
2 (y)u+

n∑
i=2

k2ixiu+O[3] (x, u)

... =
...

ẋn−1 = an−1x1 + xn + bn−1u+ β
[2]
n−1 (y) + γ

[1]
n−1(y)u+

n∑
i=2

k(n−1)ixiu+O[3] (x, u)

ẋn = anx1 + bnu+ β
[2]
n (y) + γ

[1]
n (y)u+

n∑
i=2

hijxixj +
n∑

i=2

knixiu+O[3] (x, u)

(1.72)

Proof 1.5.2 As
_
f
[2]
(z) = 0 and

_
g
[1]
(z) = 0, then the homological equations became [12]:

i) AobsΦ
[2](z)− ∂Φ[2]

∂z Aobsz = −f [2](z) + β[2] (z1)

ii) −∂Φ[2]

∂z Bobs = −g[1](z) + γ[1](z1)

with the condition Φ
[2]
1 (z) = 0 (i.e. y = z1 = x1) and thanks to the structure of Aobs, we have for

the first homological equation:

Φ
[2]
2 (z) = −f [2]1 (z) + β

[2]
1 (z1)

Φ
[2]
3 (z) =

n−1∑
i=1

∂Φ
[2]
2

∂zi
(aiz1 + zi+1) +

∂Φ
[2]
2

∂zn
anz1 − f

[2]
2 (z) + β

[2]
2 (z1)

Φ
[2]
4 (z) =

n−1∑
i=1

∂Φ
[2]
3

∂zi
(aiz1 + zi+1) +

∂Φ
[2]
3

∂zn
anz1 − f

[2]
3 (z) + β

[2]
3 (z1)

... =
...

Φ
[2]
n (z) =

n−1∑
i=1

∂Φ
[2]
n−1

∂zi
(aiz1 + zi+1) +

∂Φ
[2]
n−1

∂zn
anz1 − f

[2]
n−1(z) + β

[2]
n−1 (z1)

and for the last row

0 =
n−1∑
i=1

∂Φ[2]
n

∂zi
(aiz1 + zi+1) +

∂Φ[2]
n

∂zn
anz1 − f

[2]
n (z) + β

[2]
n (z1) .

The (n− 1) first equations give the value of Φ[2] (z) , which cancel all the quadratic terms in the (n− 1)
first lines of f [2](z). Moreover, as β[2] (z1) is a free homogeneous vector field it is also possible to cancel some
terms of f [2]n (z). More precisely, setting β[2]

i (z1) = βiz
2
1 , we have for the first equation:

Φ
[2]
2 (z) = −f [2]1 (z) + β1z

2
1

and for the second equation we obtain:

Φ
[2]
3 (z) =

n−1∑
i=1

∂
(
−f

[2]
1 (z)+β1z

2
1

)
∂zi

(aiz1 + zi+1)− ∂f
[2]
1 (z)
∂zn

anz1 − f
[2]
2 (z) + β2z

2
1 .

Thus, we rewrite the term Φ
[2]
3 (z) as follows:

Φ
[2]
3 (z) = 2β1z1z2 + β2z

2
1 + Φ̄

[2]
3

(
z, β1z

2
1

)
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with

Φ̄
[2]
3

(
z, β1z

2
1

)
= 2β1a1z

2
1 − f

[2]
2 (z)−

n−1∑
i=1

∂f
[2]
1 (z)
∂zi

(aiz1 + zi+1)− ∂f
[2]
1 (z)
∂zn

anz1.

Therefore, the third equation becomes:

Φ
[2]
4 (z) =

n−1∑
i=1

∂
(
2β1z1z2+β2z

2
1+Φ̄

[2]
3 (z,β1z

2
1)
)

∂zi
(aiz1 + zi+1) +

∂Φ̄
[2]
3 (z,β1z

2
1)

∂zn
anz1

−f [2]3 (z) + β3z
2
1 .

which we can rewrite as follows:

Φ
[2]
4 (z) = 2β1z1z3 + 2β2z1z2 + β3z

2
1 + Φ̄

[2]
4

(
z, β1z

2
1 , β1z1z2, β2z

2
1

)
and we are considered outside the function Φ̄

[2]
4 where, only terms of the form βiz1zj, with j + i ≥ 4, thus

we have:

Φ̄
[2]
4

(
z, β1z

2
1 , β1z1z2, β2z

2
1

)
= 2 (β2a1 + β1a2) z

2
1 + 2β1z

2
2 + 2β1a1z1z2

+
n−1∑
i=1

∂Φ̄
[2]
3 (z,β1z

2
1)

∂zi
(aiz1 + zi+1)

+
∂Φ̄

[2]
3 (z,β1z

2
1)

∂zn
anz1 − f

[2]
3 (z).

Recursively, we obtain:

Φ
[2]
n (z) = 2β1z1zn−1 + 2β2z1zn−2 + 2β3z1zn−3 + ...+ 2βn−2z1z2 + βn−1z

2
1

+Φ̄
[2]
n

(
z, β1

n−2∑
j≥i=1

zizj , β2
n−3∑

j≥i=1

zizj , ., βn−1z
2
1

)

Φ
[2]
n (z) = 2z1

n−1∑
i=2

βn−izi + βn−1z
2
1

+Φ̄
[2]
n

(
z, β1

n−2∑
j≥i=1

zizj , β2
n−3∑

j≥i=1

zizj , ., βn−1z
2
1

)

and finally the last equation is:

0 =
n−1∑
i=1

(aiz1 + zi+i)
∂

(
2z1

n−1∑
j=2

βn−jzj+βn−1z
2
1+Φ̄[2]

n (...)

)
∂zi

+
∂Φ̄[2]

n (...)
∂zn

anz1

−f [2]n + βnz
2
1

which gives:

−2z1
n−1∑
i=2

βn−izi − βnz
2
1 =

n−1∑
i=1

∂Φ̄[2]
n (...)
∂zi

(aiz1 + zi+1) +
∂Φ̄[2]

n (...)
∂zn

anz1 − f
[2]
n

+2
n−1∑
i=1

βn−izi(a1z1 + z2) + 2βn−1z1(a1z1 + z2)

Consequently, the free vector field β[2] (z1)can only cancels the quadratic term z1zi foa all i ∈ {1, ......, n}
in the last equation.

For the second homological equation, we have only γ[1] (z1) as a free vector field. Thus in
γ[1](z1) = −∂Φ[2]

∂z B + g[1](z), the vector field γ[1] (z1) is only able to cancels terms in z1.
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Remark 1.5.2 In reference to the work of Poincaré, we call the terms hijxixj (for all n ≥ i ≥ j ≥ 2) and
klixiu (for all n ≥ l ≥ 1 and n ≥ i ≥ 2) the resonant terms.

Corollary 1.5.1 Under the lemma 1.5.1, if the system (1.67) is quadratically equivalent to the system (1.68)
where the hij and kli are zero for all n ≥ i ≥ j ≥ 2 and n ≥ l ≥ 1, then the system (1.67)is quadratically
linearizable modulo an output injection.

1.5.2.1 Practical example for linearly observable case

Example 1.5.1 [12] Let us consider the following linearly observable system
.
z1 = a1z1 + z2 + k1z

2
2 + l1z

2
3.

z2 = a2z1 + z3 + k2z
2
2 + l2z

2
3.

z3 = a3z1 + k3z
2
2 + l3z

2
3

y = z1

(1.73)

Suppose there exists a diffeomorphism x = z − Φ[2](z), which transforms the system (1.73) into
ẋ1 = a1x1 + x2 +Φ

[2]
2 (x) + k1x

2
2 + l1x

2
3 −

∂Φ
[2]
1 (x)
∂x Ax+O[3] (x)

ẋ2 = a2x1 + x3 +Φ
[2]
3 (x) + k2x

2
2 + l2x

2
3 −

∂Φ
[2]
2 (x)
∂x Ax+O[3] (x)

ẋ3 = a3x1 + k3x
2
2 + l3x

2
3 −

∂Φ
[2]
3 (x)
∂x Ax+O[3] (x)

y = x1

with

A =

 a1 1 0
a2 0 1
a3 0 0

 and

 f
[2]
1 (z) = k1z

2
2 + l1z

2
3

f
[2]
2 (z) = k2z

2
2 + l2z

2
3

f
[2]
3 (z) = k3z

2
2 + l3z

2
3


By using the homological equations we have:

Φ
[2]
1 (z) = 0

Φ
[2]
2 (z) = −k1z22 − l1z

2
3 + β1z

2
1

Φ
[2]
3 (z) = (2β1a1 + β2) z

2
1 + (2β1 − 2k1a2) z1z2

−2k1z2z3 − 2l1a3z1z3 − k2z
2
2 − l2z

2
3

then by choosing {
β1 = l1a1a3 + 2k1a2 + l2a3,
β2 = −3β1a1 + k1a1a2 + k2a2 + k1a3

the normal form of system (1.73) is:
.
x1 = a1x1 + x2 + β1x

2
1 +O[3](x)

.
x2 = a2x1 + x3 + β2x

2
1 +O[3](x)

.
x3 = a3x1 + (k3 − 2β1 + 2k1a2)x

2
2 + (l3 + 2k1)x

2
3

+(2l1a3 + 2k2)x2x3 +O[3](x)

so the resonant terms that cannot be cancelled are: (k3 − 2β1 + 2k1a2)x
2
2, (l3 + 2k1)x

2
3 and (2l1a3 + 2k2)x2x3.
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1.5.3 One dimensional linearly unobservable case
Assumption 1.5.1 Let us consider the system (1.65) and assume that the pair (A,C) has one unobservable
real mode (i.e. the linear observability matrix O (A,C) =

[
C,CA, ....CAn−1

]T is of range n− 1).

Under this assumption, there exists a linear change of coordinates z = Tξ and a Taylor expansion which
transform the system (1.65) in the following form:

˙̃z = Aobsz̃ +Bobsu+ f̃ [2](z) + g̃[1](z)u+O[3] (z, u)

żn = αnzn +
n−1∑
i=1

αizi + bnu+ f
[2]
n (z) + g

[1]
n (z)u+O[3] (z, u)

y = Cobsz̃

(1.74)

where:

Aobs =


a1 1 0 . . 0
a2 0 1 0 . .
. 0 . . 0 .
. 0 . 0 . 0
an−2 0 . . 0 1
an−1 0 . . . 0

, Bobs =


b1
b2
.
.
bn−2

bn−1

 and Cobs = [1, 0, ..., 0].

zn is the linearly unobservable state, z̃ = [z1, z2, · · · , zn−1]
T is the linearly observable state vector, z =

[z̃T , zn]
T is the global state vector, f̃ [2] (z) =

[
f
[2]
1 (z) , f

[2]
2 (z) , ..., f

[2]
n−1 (z)

]T
and g̃[1] (z) =

[
g
[1]
1 (z) , g

[1]
2 (z) , ..., g

[1]
n−1 (z)

]T
with f̃ [2]i (z) and g̃[1]i (z) are respectively homogeneous polynomials of degree 2 and 1 in z ∀ i, 1 ≤ i ≤ n. The
linear part of the system (1.74) has a non-observable “real” mode of value αn.

After having decomposed the system (1.66) into a linearly observable part z̃ and a linearly unobservable
part zn, we define the quadratic equivalence modulo an output injection.

Definition 1.5.3 Let us consider the two systems
˙̃z = Aobsz̃ +Bobsu+ f̃ [2](z) + g̃[1](z)u+O[3] (z, u)

żn = αnzn +
n−1∑
i=1

αizi + bnu+ f
[2]
n (z) + g

[1]
n (z)u+O[3] (z, u)

y = Cobsz̃

(1.75)

is said to be quadratically equivalent to the modulo an output injection (QEMOI) to the system

˙̃x = Aobsx̃+Bobsu+
¯̃
f [2](x) + ¯̃g[1](x)u+ β̃[2](y)

+γ̃[1](y)u+O[3] (x, u)

ẋn = αnxn +
n−1∑
i=1

αixi + bnu+ f
[2]
n (x) + g

[1]
n (x)u+ β

[2]
n (y)

+γ
[1]
n (y)u+O[3] (x, u)

y = Cobsx̃

(1.76)

if there exists a modulo an output injection

β̃[2](y) + γ̃[1](y)u and β
[2]
n (y) + γ

[1]
n (y)u

and a diffeomorphism of the form:

x̃ = z̃ − Φ̃[2] (z) and xn = zn − Φ
[2]
n (z) (1.77)
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which transforms the one to the quadratic part of (1.75) of the other one to the quadratic part of (1.76).
With xn the linearly unobservable state, x̃ = [x1, x2, ..., xn−1]

T is the linearly observable state vector, x =

[x̃T , xn]
T is the global state vector and Φ̃[2] (z) = [Φ

[2]
1 (z) , ....,Φ

[2]
n−1 (z)]

T ,

β̃[2] (y) =
[
β
[2]
1 (y) , ...., β

[2]
n−1 (y)

]T
are homogeneous polynomials in z, respectively,in y, of degree two, and

γ̃[1](y) =
[
γ
[1]
1 (y) , ..., γ

[1]
n−1 (y)

]T
is homogeneous of degree one in y.

In the same way as in the linearly observable case, we will give in the following proposition the necessary
and sufficient conditions for the existence of a diffeomorphism (1.77) and this modulo the output injection.

Proposition 1.5.3 System (1.75) is quadratically equivalent to system (1.76), modulo an. output injection
if and only if, the two sets of following homological equations are verified

i)


¯̃
f [2](z)− f̃ [2](z) + β̃[2](z1) = AobsΦ̃

[2] (z)− ∂Φ̃[2]

∂zn
(αnzn +

n−1∑
i=1

αizi)− ∂Φ̃[2]

∂z̃ Aobsz̃

¯̃g[1](z)− g̃[1](z) + γ̃[1](z1) = −∂Φ̃[2]

∂z̃ Bobs − ∂Φ̃
∂zn

bn

ii)



f̄
[2]
n (z)− f

[2]
n (z) + β

[2]
n (z1) =

n−1∑
i=1

αiΦ
[2]
i (z) + αnΦ

[2]
n (z)− ∂Φ[2]

n

∂z̃ Aobsz̃

−∂Φ[2]
n

∂zn
(αnzn +

n−1∑
i=1

αizi)

ḡ
[1]
n (z)− g

[1]
n (z) + γ

[1]
n (z1) = −∂Φ[2]

n

∂zn
bn − ∂Φ[2]

n

∂z̃ Bobs

Now as the linearly observable part is already in the normal form (i.e. Brunovsky) we give:

Theorem 1.5.2 [12, 11] The normal form with respect to the quadratic equivalence modulo an output injec-
tion of the system(1.75) is:

ẋ1 = a1x1 + b1u+ β
[2]
1 (y) + γ

[1]
1 (y)u+

n∑
i=2

k1ixiu+O[3] (x, u)

ẋ2 = a2x1 + b2u+ β
[2]
2 (y) + γ

[1]
2 (y)u+

n∑
i=2

k2ixiu+O[3] (x, u)

... =
...

ẋn−2 = an−2x1 + bn−2u+ β
[2]
n−2(y) + γ

[1]
n−2(y)u+

n∑
i=2

k(n−2)ixiu+O[3] (x, u)

ẋn−1 an−1x1 + bn−1u+ β
[2]
n−1(y) + γ

[1]
n−1(y)u+

n∑
j≥i=2

hijxixj + h1nx1xn

+
n∑

i=2

k(n−1)ixiu+O[3] (x, u)
(1.78)

ẋn = αnxn +
n−1∑
i=1

αixi + bnu+ β
[2]
n (y) + γ

[1]
n (y)u+

n∑
i=2

k(n−1)ixiu

+f
[2]
n (x) + αnΦ

[2]
n (x) +

n−1∑
i=1

αiΦ
[2]
i (x)− ∂Φ[2]

n

∂x̃ Aobsx̃

−∂Φ[2]
n

∂xn
(αnxn +

n−1∑
i=1

αixi) +O[3] (x, u)

the coefficients hi,j and ki,i, for 2 ≤ i ≤ j ≤ n are called quadratic normal numbers.
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Proof 1.5.3 For the linearly observable part, the proof is identical to that of theorem 1.5.1. For the linearly
unobservable part, to cancel all quadratic terms in the last ẋn dynamic, Φ[2]

n (x) for this, we must check the
following equation:

−f [2]n (x) + β
[2]
n (x1) = αnΦ

[2]
n (x) +

n−1∑
i=1

αiΦ
[2]
i (x)− ∂Φ[2]

n

∂x̃ Aobsx̃− ∂Φ[2]
n

∂xn
(αnxn +

n−1∑
i=1

αixi)

which generally does not admit a solution for all αn and ai. Nevertheless, the conditions are less restrictive
than the usual ones thanks to the output injection β

[2]
n (x1).

The remaining resonant terms:

Corollary 1.5.2

1) Thanks to the terms k(n−1)nxnu in the normal form (1.78), it is possible with a well-chosen input u (uni-
versal input [11], to reconstruct the local quadratic observability of xn.

2) Thanks to the terms hinxixn (i ∈ [1, n− 1]) in the normal form (1.78), it is also possible to locally recover
the quadratic observability of xn.

3) In normal form (1.78), if the kij are all zero ∀ 1 ≤ i ≤ n − 1, isolating the terms in the unobservable
direction xn, the locally unobservable manifold is:

Sn =

{
x, such as

n−1∑
i=1

hinxi + 2hnnxn + k(n−1)nu = 0

}

4) The resonant terms on the last under dynamics ẋn, do not contribute anything for the local quadratic
observability.

Remark 1.5.3 In the case where all k(n−1)n and hin are zero, αn guarantees us or not the detectability of
the state xn:

a) if αn < 0, then the state xn is detectable,

b) if αn > 0, xn is unstable and consequently undetectable,

c) if αn = 0, we can use the center manifold theory in order to analyze the stability or in stability of xn
and consequently its detectability or undetectability [11].

1.5.3.1 Example: Lorentz system

In this section, by means of an example we will to illustrate the presented results in section 2.2.2, let us
consider the following Lorentz system presented in reference [51]:

ξ̇1 = −10ξ1 + 10ξ2
ξ̇2 = 28ξ1 − ξ2 − ξ1ξ3
ξ̇3 = αξ3 + ξ1ξ2

(1.79)

Now, consider the following change of coordinates: z1 = ξ1
z2 = ξ1 + 10ξ2 =⇒ ξ2 = − 1

10z1 +
1
10z2

zu = ξ3
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which transforms the system into the Brunovsky normal form:
ż1 = −11z1 + z2
ż2 = 270z1 − 10z1zu
żu = − 8

3zu − 1
10 (z1)

2
+ 1

10z1z2

(1.80)

Now, consider the change of coordinates xo = zo − φo(z) and xu = zu − φu(z), such that:

xo =

[
x1
x2

]
=

[
z1 − φ1(z)
z2 − φ2(z)

]
xu = xu = zu − φu(z)

and by using the homological equations we have:

φ1(z) = 0
φ2(z) = 0.

Note: For xu the Sylvester equation gives a solution φu(x) = 0. Thus, the quadratic term cannot be
cancelled.

ẋu = − 8
3xu + 8

3φu(x1)− ∂φu(x1)
∂x Ax+ 1

10x1x2 −
1
10 (x1)

2

= − 8
3xu + 1

10x1x2 −
1
10 (x1)

2

and we obtain the following observability quadratic normal form of the Lorentz system: ẋ1 = −11x1 + x2
ẋ2 = 270x1 − 10x1xu
ẋu = − 8

3xu + 1
10x1x2 −

1
10 (x1)

2
(1.81)

Now, for this example to design the sliding mode observer we take as output the state x1.

Moreover, the first two states are linearly observable and the third state is unobservable. The eigenvalues
of the considered system are {−22. 8277, 11.8277, − 2.6667}, then we can see that the unobservable mode is
−2.6667 so the system is linearly detectable. Then the observer for system (2.35) is given by:

˙̂x1 = −11x1 + x̂2 + δ1sign(x1 − x̂1)
˙̂x2 = 270x1 − 10x1x̂u + E1δ2sign(x̃2 − x̂2)
˙̂xu = − 8

3 x̃u + 1
10x1x̃2 −

1
10 (x1)

2 + E2 δ3sign(x̃3 − x̂3)

(1.82)

In system (2.36) the auxiliary components z̃i are determined algebraically:

x̃2 = x̂2 + E1δ1sign (x1 − x̂1)

x̃u = x̂u + E2ESδ2
10x1+ES−1sign (x̃2 − x̂2)

with the following conditions:

if x1 = x̂1 then E1 = 1, otherwise E1 = 0,
if x̃2 = x̂2 and x1 = x̂1 then E2 = 1 otherwise E2 = 0,
if x1 = 0 then Es = 0 otherwise Es = 1.

Remark 1.5.4 We can see that when x1 = 0, x̃u tends to infinity, meaning that observability singularity
occurs. Thus, to avoid the explosion of xu we introduce a filter ES as follows: If x1 = 0, then ES = 0
otherwise ES = 1. In this case x̃u becomes:
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x̃u = x̂u +
E2ES

δ 2
10x1 + ES − 1sign (x̃2 − x̂2) .

In order to not lose the observability for a long time at singularity surface, we must set correctly ES by
taking ES = 0 during a short period of time. Before providing the simulation results, note that:

x̂1 = ξ̂1
x̂2 = ξ̂1 + 10ξ̂2 =⇒ ξ̂2 = − 1

10 x̂1 +
1
10 x̂2

x̂u = ξ̂3

However, we can see that x1 = 0, so the observability is not lost.

Simulation results

Figures 1.4a show the obtained simulation results for the Lorentz system. Figure 1.4 illustrates the
dynamics of the observer and the Lorentz system for 20s, for this simulations, we have considered the
following initial conditions x1 = 10, x2 = 20, xu = 30 and x̂1 = 0, x̂2 = 0, x̂u = 30. Figure 1.4b illustrates
the estimation error , it can then be noticed that the observer’s state x11 converges in 1.6sec and for the other
states the convergence is obtained in 6sec.
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(a) Dynamics of Lorenz system and the observer
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(b) Estimation errors of the Lorenz observer

Figure 1.4: Plot the dynamics of Lorenz system

Figure 1.5 illustrates the trajectories in the phase plane of the observer and the Lorentz system.
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Figure 1.5: Trajectories in the phase plane.

1.6 Conclusion
In conclusion, this chapter has provided a comprehensive exploration of observability in nonlinear systems .
We explored the essential characteristics of both linear and nonlinear systems, highlighting key concepts such
as observability requirements and various observer strategies, including sliding mode observers and Kalman
filters.

To address the limitations of traditional observability concepts, we introduced the quadratic observability
normal form for single-input single-output (SISO) systems. This form enhances the classical linear observabil-
ity framework by incorporating higher-order terms, allowing for a more refined characterization of a system’s
observability properties. It facilitates the transformation of nonlinear systems into equivalent representations
where state variables and their interactions are expressed up to the second order. This approach not only
enhances our understanding of the system’s dynamics but also aids in designing effective observers for state
estimation and fault detection.
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Quadratic observability normal form for
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2.1 Introduction

In this chapter, we introduce our first major contribution to the field of observability analysis for dynamical
systems. Our work focuses on extending existing results on the quadratic normal form ([10]), which was
initially developed for single-input, single-output (SISO) linear systems, to for nonlinear multi-input multi-
output systems. This general framework enhances our understanding of observability in complex contexts,
particularly for multi-variable systems where dynamic interactions are richer and more varied.

We begin with a detailed description of the computational technique for deriving the quadratic normal
form of observability, distinguishing between linearly observable and linearly unobservable systems. This
distinction is fundamental, as it influences how information about the system’s state can be extracted from
observations. For linearly observable systems, observability can be analyzed directly through the system’s
linear structure, whereas for unobservable systems, additional methods are required to capture the nonlin-
earities affecting observability.

Finally, to demonstrate the feasibility and effectiveness of our approach, we provide numerical examples
in which we develop this transformation step by step.
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2.2 Quadratic observability normal form for nonlinear multi-output
systems

This section focuses on the concept of quadratic equivalence in the context of nonlinear systems. First, we
establish the definition of this quadratic equivalence. Throughout the section, we examine a Multi-Output
nonlinear system governed by the following equations:{

ξ̇ = F (ξ)
y = h(ξ)

(2.1)

where ξ ∈ Rn is the state vector of the system, y ∈ Rp is the output vector and F (ξ) ∈ Rn is the vector
field such that F (ξ) : U ⊂ Rn −→ Rn is assumed to be real analytic and he output vector y ∈ Rp represents
the measurable outputs of the system. Without loss of generality, we assume that F (0) = 0. Moreover,
by setting: A = ∂F

∂ξ (0) and performing a Taylor series development around the equilibrium point ξe = 0 of
system (2.1). We write the system (2.1) as follows:{

ξ̇ = Aξ + f(ξ) +O3(ξ)
y = Cξ

(2.2)

where f (ξ) is a homogeneous polynomial of degree 2 in ξ and O3(ξ) is terms of higher order > 2.

Let’s start by define the notion of quadratic equivalence under coordinates change and output injection.
Note that, in this section the term "output injection" refers to the injection of all available variables, output
and known input. First let us define the so-called quadratic equivalence.

Definition 2.2.1 The system (2.2) is said to be quadratically equivalent to the following system:{
ζ̇ = Aζ + f̄(ζ) + β(y) +O3(ζ)
y = Cx

(2.3)

Modulo an Output Injection (MOI) β(y) if there exists a diffeomorphism of the form:

ζ = ξ − φ (ξ) (2.4)

which transforms the quadratic part f(ξ) of system (2.2) into the quadratic part f̄(ζ) of system (2.3)
modulo the output injection β(y). Where φ (ξ) is quadratic homogeneous polynomial term in ξ and β(y) is
quadratic homogeneous polynomial term in y.

Remark 2.2.1 We note that output injection refers to the injection of all output variables. The equivalence
modulo an output injection is justified by the fact that the output injection cancels out in the observation
error dynamics (see [49], [50], [70]).

The problem we will address here is: what is the quadratic observability normal form associated with the
system (2.2) respecting the quadratic equivalence modulo an output injection β(y)?

In what follows, we will give the so-called quadratic observability normal form associated to system (2.2)
modulo the output injection β(y) by examining two cases:

1. The linearly observable systems.

2. The linearly unobservable systems.
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2.2.1 Linearly observable case
Before delving into the assumptions that will guide our analysis, it’s essential to highlight the significance
of the observable case within the framework of quadratic observability. Observability is a critical concept
in control theory, as it determines the ability to infer the internal state of a system from its outputs. In
the context of nonlinear systems, establishing the observable case is vital for ensuring that we can achieve
quadratic equivalence. This equivalence is crucial for developing effective control strategies, as it allows us
to accurately characterize the system’s dynamics and design appropriate observers, thereby enhancing our
ability to control complex systems effectively.

In this section we will make this assumption:

Assumption 2.2.1 We assume that the pair (A,C) of system (2.2) is observable thus that

rank


C
CA
...

CAn−1

 = n.

Under this assumption and Brunovsky’s work [14], we can assume the linear part of system (2.2) in the
observable Brunovsky form. We can provide the following lemma.

Lemma 2.2.1 [14] Under the assumption 2.2.1, there exists a linear change of coordinates z = Tξ which
transforms system (2.2) into the following form:

ż1 = A1
oz

1 + f1(z) +O3(z)
ż2 = A2

oz
2 + f2(z) +O3(z)

... =
...

żp = Ap
oz

p + f
p

(z) +O3(z)
y = Coz

(2.5)

where zq ∈ Rrq is the state vector observed by the output yq = zq1 for 1 ≤ q ≤ p , with
p∑

q=1
rq = n. We put:

z =
[
z1 z2 . . . zp

]T ∈ Rn,

zq =
[
zq1 zq2 . . . zqrq

]T ∈ Rrq ,

Ao =


A1

o [0]r1r2 · · · [0]r1rp

[0]r2r1 A2
o

...
...

... · · ·
. . .

...
[0]r2rrp · · · 0 Ap

o

 ∈ Rn×n,where Aq
o =



aq1 1 0 · · · 0

aq2 0 1 0
...

...
...

. . . . . . 0

aqrq−1 0
. . . 0 1

aqrq 0 · · · 0 0


∈ Rrq×rq ,

Co =


C1

o [0]1r2 · · · [0]1rp

[0]1r1 C2
o

...
...

... · · ·
. . .

...
[0]1r1 · · · · · · Cp

o

 ∈ Rp×n,with Cq
o =

[
1 0 · · · 0

]
∈ R1×rq ,
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2.2. Quadratic observability normal form for nonlinear multi-output systems

f (z) =
[
f1 (z) f2 (z) . . . f

p

(z)
]T ∈ Rn with

f
q

(z) =
[
f

q

1 (z) f
q

2 (z) . . . f
q

rq (z)
]T ∈ Rrq

and where fqi (z) is a homogeneous polynomial of degree 2 in z.

Remark 2.2.2 If the pair (A,C) is observable then

rank


Cq

o

Cq
oA

q
o

...
Cq

oA
q(rq−1)
o

 = rqfor1 ≤ q ≤ p with
p∑

q=1

rq = n.

2.2.1.1 Quadratic observability normal form

Now, we will determine the necessary and sufficient conditions to quadratic equivalence modulo an output
injection associated to system (2.3).

Proposition 2.2.1 System (2.5) is Quadratically Equivalent Modulo an Output Injection (QEMOI) to sys-
tem 

ẋ1 = A1
ox

1 + f̄1(x) + β1(y) +O3(x)
ẋ2 = A2

ox
2 + f̄2(x) + β2(y) +O3(x)

... =
...

ẋp = Ap
ox

p + f̄p(x) + βp(y) +O3(x)
y = Cox

(2.6)

if and only if there exist a diffeomorphism (xq = zq − φq(z)) and an output injection βq(y) that satisfy the
following homological equation:

f̄q(x) + βq (y) = Aq
0φ

q(x) + fq(x)− ∂φq (x)

∂x
A0x.

where φq (z) ∈ Rrq and β (y) ∈ Rrq are quadratic homogeneous polynomial terms in z and y.

Proof 2.2.1 Let xq = zq − φq(z). Then ẋq = żq − ∂φq(z)
∂z ż

Substituting the expression for z from System (2.5) into the equation above, we get:

ẋq = Aq
0z

q + fq(z) +O3(z)− ∂φq(z)

∂z
(A0z + f(z) +O3(z))

By substituting xq with zq − φq(z) in System (2.6), we have:

ẋq = Aq
0(z

q − φq(z)) + f̄q(z − φ(z)) +O3(z − φ(z)) + βq(y)

For system (2.5) to be quadratically equivalent to system (2.6), their quadratic parts must be equal:

Aq
0z

q −Aq
0φ

q(z) + f̄q(z) + βq(y) = Aq
0z

q + fq(z)− ∂φq(z)

∂z
A0z

This equality leads to the following homological equation:

f̄q(z) + βq(y) = Aq
0φ

q(z) + fq(z)− ∂φq(z)

∂z
A0z.
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Chapter 2. Quadratic observability normal form for MIMO systems

Now, the problem we will address here is: what is the quadratic observability normal form associated to
system (2.5) with respect to the quadratic equivalence modulo an output injection
β(y) =

[
β1(y) β2(y) . . . βP (y)

]T ∈ Rn with

βq(y) =
[
βq
1(y) βq

2(y) . . . βq
rq (y)

]T ∈ Rrq for 1 ≤ q ≤ p with
p∑

q=1
rq = n?

In what follows, we will present an explicit procedure to compute the diffeomorphism and the output
injection, enabling us to derive the quadratic observability normal form for nonlinear Multi-Output systems.
To achieve this, for 1 ≤ q ≤ p, let us consider the diffeomorphism xq = zq − φq (z) which ensures that the
outputs remain unchanged. Where φ

q

(z) =
[
φq
1(z) φq

2(z) . . . φq
rq (z)

]T ∈ Rrq ∈ Rrq and βq (y) ∈ Rrq

are quadratic homogeneous polynomial terms respectively in z and y.

In this work, we don’t allow any quadratic transformation on the output, which leads us to make this
assumption.

Assumption 2.2.2 To ensure that the outputs remain unchanged, the diffeomorphism (xq = zq − φq (z)) is
choosing such such that φq

1 (z) = 0 for 1 ≤ q ≤ p .

Based on this foundation, we can establish the following theorem.

Theorem 2.2.1 Under assumption 2.2.2, if the pair (A0, C0) is observable there exist a diffeomorphism
x = z − φ(z) and an output injection witch transform (2.5) in the following quadratic observability normal
form: 

ẋq1 = aq1x
q
1 + x12 + βq

1(y)
ẋq2 = aq2x

q
1 + x13 + βq

2(y)
... =

...
ẋqrq−1 = a1rq−1x

q
1 + xqrq + βq

rq−1(y)

ẋqrq = aqrqx
q
1 + f̄qrq (x) + βq

rq (y)

(2.7)

for 1 ≤ q ≤ p with
p∑

i=q

rq = n where:

f̄
q

rq (x) = f
q

rq (x)−
∂φq

rq (x)

∂x
Aox.

and where the components of the quadratic part of the diffeomorphism are derived by induction from the
following equations:

φq
1(x) = 0

φq
i (x) =

∂φq
i−1(x)

∂x A0x− fqi−1(x) + βq
i−1(y) for all 2 ≤ i ≤ rq.

(2.8)

Proof 2.2.2 For the initial dynamics, we have:
.
z
q
1 = aq1z

q
1 + zq2 + fq1 (z) +O3(z)

with the transformation:
xq1 = zq1 − φq

1(z)

we obtain:

.
x
q
1 =

.
z
q
1 −

∂φq
1

∂z

.
z

.
x
q
1 = aq1z

q
1 + zq2 + fq1 (z) +O3(z)− ∂φq

1(z)
∂z

(
A0z + f(z) +O3(z)

)
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2.2. Quadratic observability normal form for nonlinear multi-output systems

By substituting zqi = xqi + φq
i (x) in the previous expression and retaining terms of orders 1 and 2, we

arrive at:

.
x
q
1 = aq1x

q
1 + aq1φ

q
1(x) + xq2 + φq

2(x) + fq1 (x)−
∂φq

1 (x)

∂x
A0x

by assumption the output y = zq1 is unchanged (φq
1(x) = 0), therefore we have:

.
x
q
1 = aq1x

q
1 + xq2 + φq

2(x) + fq1 (x)−
∂φq

1 (x)

∂x
A0x+O3(x)

Now, let’s compare this with the desired form stated in Theorem 2.2.1:

aq1x
q
1 + xq2 + φq

2(x) + fq1 (x)−
∂φq

1 (x)

∂x
A0x = aq1x

q
1 + xq2 + f̄q1 (x) + βq

1(y)

After simplification, we obtain:

f̄q1 (x) = φq
2(x)−

∂φq
1(x)

∂x
A0x+ fq1 (x)− βq

1(y)

to have f̄q1 (x) = 0 we choose:

φq
2(x) =

∂φq
1(x)

∂x
A0x− fq1 (x) + βq

1(y)

Similarly, for each index i = rq − 1, we obtain:

f̄qi (x) = φq
i+1(x)−

∂φq
i (x)

∂x
A0x+ fqi (x)− βq

i (y)

to have f̄qi (x) = 0 we choose:

φq
i+1(x) =

∂φq
i (x)

∂x
A0x− fqi (x) + βq

i (y) (2.9)

The first (rq − 1) equations provide the value of φq(z), which cancels all the quadratic terms in the first
(rq − 1) lines of f

q

(z). For the last equation, we have xqrq = zqrq − φ
q

rq (z), then:

ẋqrq = żqrq −
∂φq

rq

∂z
ż

ẋqrq = aqrqz
q
1 + fqrq (z) +O3(z)−

∂φq
rq (z)

∂z
(A0z + f(z)) +O3(z))

By substituting zqrq = xqrq + φq
rq (x) in the previous expression and retaining only terms of order 1 and 2,

we obtain:

ẋqrq = aqrqx
q
1 + aq1φ

q
1(x) + fqrq (x)−

∂φq
rq (x)

∂x
A0x

Comparing with the desired form stated in Theorem 2.2.1:

aqrqx
q
1 + fqrq (x)−

∂φq
rq (x)

∂x
A0x = aqrqx

q
1 + f̄qrq (x) + βq

rq (y)

After simplification, we obtain:

f̄qrq (x) = −
∂φq

rq (x)

∂x
A0x+ fqrq (x)− βq

rq (y)
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Chapter 2. Quadratic observability normal form for MIMO systems

For f̄qrq (x) = 0 we must have:

0 =
∂φq

rq (x)

∂x
A0x− fqrq (x) + βq

rq (y)

Given that φq
1(x) = 0 for all 1 ≤ q ≤ p, we derive the quadratic components of quadratic transformation

xqi = zqi − φq
i (z) from the equation (2.9). Inductively, we obtain:

φq
i (x) =

∂φq
i−1(x)

∂x A0x− fqi−1(x) + βq
i−1(y) for all 2 ≤ i ≤ rq

Thus, through this quadratic transformation, the dynamical system (2.5) is placed into the desired form (2.7).

Remark 2.2.3 We recall that resonant terms, as defined by Poincaré, refer to f̄qrq (x) for 1 ≤ q ≤ p.

Remark 2.2.4 For nonlinear single-input single-output systems (p = 1 et r1 = n), we have (see [10]):

f̄qrq (x) = f̄n(x) =
n∑

j≥i=2

hijxixj

Remark 2.2.5 Putting together all these equations (2.8), we obtain the following homological equation:

Aq
0φ

q(x)− ∂φq (x)

∂x
A0x = −fq(x) + βq(y) for all 1 ≤ q ≤ p

In other terms,

A0φ(x)−
∂φ

∂z
A0x = −f(x) + β(y)

which is equivalent to

[A0x, φ(x)] = −f(x) + β(y)

where [, ] stands for the Lie bracket.

In conclusion, Theorem 2.2.1establishes the quadratic observability normal form, which is a pivotal devel-
opment in the analysis of nonlinear multi-output systems. This form not only provides a systematic approach
for transforming system dynamics but also underscores the essential conditions for achieving quadratic equiv-
alence under output injection. The implications of this normal form are profound: it enhances our under-
standing of system observability, facilitates the design of effective observers, and aids in the implementation
of robust control strategies. By characterizing the system’s dynamics in this way, we empower engineers
and researchers to tackle the complexities of nonlinear systems with greater confidence, ultimately improving
performance in various applications across control engineering and related fields.

The following numerical example illustrates the obtained results in Theorem 2.2.1.
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2.2. Quadratic observability normal form for nonlinear multi-output systems

2.2.1.2 Illustrative example: Linearly observable case

In this section, by means of an example we will demonstrate how to use the quadratic normal form and the
efficiency of the proposed approach. Consider the following linearly observable system:

ξ̇1 = 7ξ1 + ξ2 + 3ξ1ξ2 + 2ξ1ξ3 − 4ξ1ξ5 + 6(ξ2)
2 + 5ξ2ξ3 + 4ξ2ξ5 − 5ξ3ξ3

+ 9ξ3ξ5 + 4ξ4ξ2 − 2ξ4ξ3 + 2ξ4ξ5 + 4ξ5ξ5

ξ̇2 = 9ξ1 + ξ3 − 6ξ1ξ2 + 2ξ1ξ3 + 7ξ1ξ5 − 3ξ2ξ2 + 5ξ2ξ3 + 3ξ2ξ5 − 6ξ3ξ3

+ 7ξ3ξ5 + 5ξ4ξ2 + 2ξ4ξ3 + 2ξ4ξ5 − 4ξ5ξ5

ξ̇3 = −5ξ1 + 3ξ1ξ2 − 2ξ1ξ3 + 5ξ1ξ5 + 3ξ2ξ2 − 7ξ2ξ3 − 2ξ2ξ5 + 2ξ3ξ3 + 9ξ3ξ5

− 6ξ4ξ2 + 5ξ4ξ3 + 2ξ4ξ5 + 2ξ5ξ5

ξ̇4 = 2ξ4 + ξ5 − 9ξ1ξ2 + 7ξ1ξ3 − 4ξ1ξ5 + 5ξ2ξ2 + 9ξ2ξ3 − 8ξ2ξ5 + 7ξ3ξ3

+ 6ξ3ξ5 + 5ξ4ξ2 − 2ξ4ξ3 + 2ξ4ξ5 + 3ξ5ξ5

ξ̇5 = 3ξ4 + 9ξ1ξ2 + 4ξ1ξ3 + 4ξ1ξ5 + 4ξ2ξ2 + 3ξ2ξ3 − 2ξ2ξ5 + 6ξ3ξ3 + 3ξ3ξ5

− 8ξ4ξ2 + 8ξ4ξ3 + 2ξ4ξ5 − 4ξ5ξ5

(2.10)

Let us assume two outputs y1 = ξ1 and y2 = ξ2. Let us set


ξ1 = z11
ξ2 = z12
ξ3 = z13
ξ4 = z21
ξ5 = z22

 .
Now, let xr1 = zr1 − φr1(z) and xr2 = zr2 − φr2(z), such that:

xr1 =

 x11
x12
x13

 =

 z11 − φ1
1(z)

z12 − φ1
2(z)

z13 − φ1
3(z)


xr2 =

[
x21
x22

]
=

[
z21 − φ2

1(z)
z22 − φ2

2(z)

]
By employing the homological equations, we derive:

φ1
1(z) = 0

φ1
2(z) = −3z11z

1
2 − 2z11z

1
3 + 4z11z

2
2 − 6z12z

1
2 − 5z12z

1
3 − 4z12z

2
2 + 5z13z

1
3 − 9z13z

2
2 − 4z12z

2
1

+2z21z
1
3 − 2z21z

2
2 − 4z22z

2
2 + β11

11(z
1
1)

2 + β11
12z

1
1z

2
1 + β11

22(z
2
1)

2

φ1
3(z) = (2β11

11 − 98)z11z
1
2 − 114z11z

1
3 + (30 + β11

12)z
1
1z

2
2 + (9β11

12 − 34)z11z
2
1 − 19z12z

1
3

+(β11
12 − 25)z12z

2
1 − 9z13z

2
2 − 29z13z

2
1 + (2β11

22 − 30)z21z
2
2 − 3z12z

2
2 + (14β11

11 − 17)(z11)
2

+(z13)
2 + 2(z22)

2 − (6− 4β11
22)(z

2
1)

2 + β12
11(z

1
1)

2 + β12
12z

1
1z

2
1 + β12

22(z
2
1)

2

φ2
1(z) = 0

φ2
2(z) = −f21 (z) + β21

11(z
1
1)

2 + β21
12z

1
1z

2
1 + β21

22(z
2
1)

2.

Finally, by setting:  β11
11 = 1075

2
β11
12 = 115
β11
22 = 5

,

 β12
11 = − 21 947

2
β12
12 = −2029
β12
22 = 1

,

 β13
11 = −39 154
β13
12 = −3804
β13
22 = −5700

and β21
11 = −13.5
β21
12 = −22
β21
22 = 12

,

 β22
11 = −73.0
β22
12 = −241
β22
22 = 42
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We derive the following normal form for system (2.10):

ẋ11 = 7x11 + x12 + β11
11(x

1
1)

2 + β11
12x

1
1x

2
1 + β11

22(x
2
1)

2

ẋ12 = 9x11 + x13 + β12
11(x

1
1)

2 + β12
12x

1
1x

2
1 + β12

22(x
2
1)

2

ẋ13 = −5x11 − 974(x12)
2 + 107x12x

1
3 − 237x12x

2
2 + 21(x13)

2 + 41x13x
2
2 + 22(x22)

2

+29x12x
2
1 + β13

11(x
1
1)

2 + β13
12x

1
1x

2
1 + β13

22(x
2
1)

2

ẋ21 = 2x21 + x22 + β21
11(x

1
1)

2 + β21
12x

1
1x

2
1 + β21

22(x
2
1)

2

ẋ22 = 3x21 − 5(x12)
2 − 1x12x

2
2 − 2(x22)

2 + 55x11x
1
3 + 20x12x

1
3 + 27x13x

2
1 − 7x13x

2
2

+15(x13)
2 − 109x11x

2
2 + β22

11(x
1
1)

2 + β22
12x

1
1x

2
1 + β22

22(x
2
1)

2

(2.11)

with y1 = x11 and y2 = x21.

Hence, the resonant terms that cannot be canceled are:−974(x12)
2, 107x12x13, −237x12x

2
2, 21(x13)2,41x13x22,

22(x22)
2, 29x12x21 and −1x12x

2
2,−5(x12)

2, 2(x22)2, 55x11x13, 20x12x13, 27x13x21, 7x13x22, 15(x13)2,−109x11x
2
2.

2.2.2 Linearly unobservable case

In this section, we outline a method to construct the quadratic observability normal form for nonlinear multi-
output systems (2.2) in cases where the linear part is not observable. (i.e. the pair (A,C) is not observable).

Assumption 2.2.3 Assume that the linear part of system (2.2) has no observable modes ξo and nu unob-
servable modes ξu. In other words

rank


Cq

o

Cq
oA

q
o

...
Cq

oA
q(rq−1)
o

 = rq − 1 for 1 ≤ q ≤ p with
p∑

q=1
rq = no < n.

Lemma 2.2.2 Under assumption 2.2.3, there exists a linear change of coordinates z = Tξ which transforms
system (2.2) into the following form:  żo = Aozo + fo(z)

żu = Auzu + Āzo + fu(z)
y = Coz

(2.12)

where for 1 ≤ q ≤ p with
p∑

q=1
rq = no:

z =
[
zo zu

]T ∈ Rn, with
zo =

[
z1 z2 . . . zp

]T ∈ Rno ,

zq =
[
zq1 zq2 . . . zqrq

]T ∈ Rrq

zu =
[
z1u z2u . . . zpu

]T ∈ Rnu and
fu (z) =

[
f1u (z) f2u (z) . . . fpu (z)

]T ∈ Rnu ,

f (z) =
[
f1 (z) f2 (z) . . . fp (z)

]T ∈ Rn with
f

q

(z) =
[
fq1 (z) fq2 (z) . . . fqrq (z)

]T ∈ Rrq
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where fqi (z) are homogeneous polynomials of degree 2 in z, for 1 ≤ q ≤ p and 1 ≤ i ≤ rq with
p∑

q=1
rq = no

and f iu (z) are homogeneous polynomials of degree 2 in z, for 1 ≤ i ≤ nu. In this case, we put

A =

[
Ao

Ā Au

]
∈ Rn×n, where

Ao =


A1

o [0]r1r2 · · · [0]r1rp

[0]r2r1 A2
o

...
...

... · · ·
. . .

...
[0]r2rrp · · · 0 Ap

o

 ∈ Rno×no ,

Au =


α1 0 · · · 0
0 α2 · · · 0
...

... · · ·
...

0 0 · · · αp

 ∈ Rnu×nuand

Ā =


[
λ111 · · ·λ11r1

] [
λ121 · · ·λ12r2

]
· · ·

[
λ1p1 · · ·λ1prp

]
[
λ211 · · ·λ21r1

] [
λ221 · · ·λ22r2

]
· · ·

[
λ2p1 · · ·λ2prp

]
...

... · · ·
...[

λ
rp
11 · · ·λ

rp
1r1

] [
λ
rp
21 · · ·λ

rp
2r2

]
· · ·

[
λ
rp
p1 · · ·λ

rp
prp

]

∈ Rnu×no .

Thus, system (2.12) has nu = n−no unobservable states. After decomposing system (2.12) into a linearly
observable part zo and a linearly unobservable part zu, we define the quadratic equivalence modulo an output
injection.

2.2.2.1 Quadratic observability normal form

Definition 2.2.2 System (2.12) is quadratically equivalent modulo the output injections βo(y) and βu(y) to: ẋo = Aoxo + f̄o(x)
ẋu = Auxu + Āxo + f̄u(x)
y = Cx,

(2.13)

if there exists a diffeomorphism of the form:

xo = zo − φo(z)
xu = zu − φu (z)

which transforms the quadratic part of (2.12) into the quadratic part of (2.13), where:

φo(z) =
[
φ1
o(z) φ2

o(z) . . . φq
o(z)

]T ∈ Rrq ,

φq
o(z) =

[
φq
1 (z) φq

2 (z) . . . φq
rq (z)

]T ∈ Rrq ,

φu (z) =
[
φ1
u (z) φ2

u (z) . . . φnu
u (z)

]T ∈ Rnu ,

βo(y) =
[
β1(y) β2(y) . . . βq(y)

]T ∈ Rno ,

and
βu(y) =

[
β1
u(y) β2

u(y) . . . βnu
u (y)

]T ∈ Rnu .
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Now, we determine the set of homological equations necessary for constructing the quadratic normal form
associated with system (2.12), as outlined in the subsequent result.

Proposition 2.2.2 System (2.12) is quadratically equivalent to system (2.13), modulo an output injection
if and only if, the two sets of following homological equations are satisfied:

(i) For the linearly observable part, for 1 ≤ q ≤ p with
p∑

q=1
rq = no, we have:

f̄q(x)− fq(x) + βq(y)
=

Aq
oφ

q
o(x)−

∂φq
o(x)

∂xo
Aoxo − ∂φq

o(x)
∂xu

(Āxo +Auxu).

(ii) For the linearly unobservable part, for 1 ≤ q ≤ nu ≤ p, with nu + no = n, we have:

f̄qu(x)− fqu(x) + βq
u(y) = αqφq

u(x) + Āφq
o(x)−

∂φq
u(x)

∂x
Ax.

Proof 2.2.3 The proof is exactly the one given in Proposition 2.2.1.

In what follows, we will present an explicit procedure to compute the diffeomorphism and the output
injection, enabling us to derive the quadratic observability normal form for system (2.12).

Theorem 2.2.2 The normal form with respect to the quadratic equivalence modulo an output injection of

the system (2.12) for 1 ≤ q ≤ p with
p∑

i=q

rq = no is given by:



ẋq1 = aq1x
q
1 + x12 + βq

1(y)
ẋq2 = aq2x

q
1 + x13 + βq

2(y)
... =

...
ẋqrq−1 = a1rq−1x

q
1 + xqrq + βq

rq−1(y)

ẋqrq = aqrqx
q
1 + f̄

q

rq (x) + βq
rq (y)

ẋqu = αqxqu +
p∑

i=1

ri∑
j=1

λqijx
j
i + f̄

q

u(x) + βq
u(y)

(2.14)

where

f̄qrq (x) = fqrq (x)−
∂φq

rq (x)

∂xo
Aoxo −

∂φq
rq (x)

∂xu
(Au + Ā)xu

and
f̄qu (x) = fqu(x)−

p∑
i=1

ri∑
j=1

λqijφ
q
j(x) + αqφq

u(x)−
∂φq

u(x)
∂x Ax.

Proof 2.2.4 For the linearly observable part, the proof is exactly the one given in Theorem 2.2.1. Now, let
us proceed with the proof of the linearly unobservable part. We have:

f̄qu(x)− fqu(x) + βq
u(y) = αqφq

u(x) + Āφq
o(x)−

∂φq
u(x)

∂x
Ax (2.15)

Then:

f̄qu(x)− fqu(x) + βq
u(y) = αqφq

u(x) +

p∑
i=1

ri∑
j=1

λqijφ
q
j(x)−

∂φq
u (x)

∂x
(Ax)

44



2.2. Quadratic observability normal form for nonlinear multi-output systems

For f̄qu(x) = 0, to cancel all quadratic terms in x on the linearly unobservable sub-dynamics ẋqu, φq
u(x)

must satisfy the following equation:

−fqu(x) + βq
u(y) = αqφq

u(x) +

p∑
i=1

ri∑
j=1

λqijφ
q
j(x)−

∂φq
u (x)

∂x
(Ax)

which genrally does not have any solutions.

Now we will provide the condition for the existence of the quadratic part φq
u (x) of the of the diffeomor-

phism that cancels all quadratic terms in sub-dynamic ẋqu. To achive this, we will express the homological
equations using matrices.

As φq
i (x) , f

q
u (x) , and βu (y) are quadratic homogeneous polynomials terms in x, they can be rewritten

in the following matrix form:

φq
i (x) = xTΦq

ix, f
q
u (x) = xT𭟋q

ux, f̄
q
u (x) = xT �̄�q

ux

and
βq
u (y) = yTΠq

uy = C
qT
o Π

q

uC
q
o

where Φq
i ,𭟋q

u, �̄�q
u and Π

q

u are symmetric matrices.
Based on this foundation, we can establish the following theorem.

Theorem 2.2.3 ([65], [18]) In quadratic observability normal form (2.28) for system (2.12), the elimination
of all quadratic terms f̄qu(x) in the sub-dynamic unobservable mode is achievable, if and only if the Sylvester
equation

ÂΦq
u − Φq

uB̂ = Ĉ (2.16)

has a unique solution Φq
u ∈ Rp×n for any Ĉ ∈ Rp×n, which implies that Â and B̂ have no common eigenvalues.

where:

Â =
[
αqIn −AT

]
∈ Rn×n, B̂ = −A ∈ Rn×n and

Ĉ = −𭟋q
u + CT

o Π
q

uCo +

p∑
i=1

ri∑
j=1

λqijΦ
j
i ∈ Rp×n

Proof 2.2.5 As φq
i (x) , f

q
u (x) , and βq

u (y) are quadratic homogeneous polynomials terms in x, they can be
rewritten in the following matrix form:

φq
i (x) = xTΦq

ix, f
q
u (x) = xT𭟋q

ux

and
βq
u (y) = yTΠq

uy = xTC
qT
o Π

q

uC
q
ox

where Φq
i ,𭟋q

u and Π
q

u are symmetric matrices. Therefore we have:

∂φq
u(x)
∂x (Ax) =

∂(xT Φq
ux)

∂x (Ax) = (Ax)
T
Φq

ix+ xTΦq
i (Ax)

= xT (ATΦq
i +Φq

iA)x.

For f̄
q

(x) = 0, the equation (2.15) became:

−fqu(x) + βq
u(y) = αqφq

u(x) +

p∑
i=1

ri∑
j=1

λqijφ
q
j(x)−

∂φq
u (x)

∂x
(Ax)
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which is equivalent in a matrix form to:

−xT𭟋q
ux+ xTCT

o Π
q

uCox+
p∑

i=1

ri∑
j=1

λqijx
TΦj

ix

=
αqxTΦq

ux− xT (ATΦq
u +Φq

uA)x

Then:

−𭟋q
u + CT

o Π
q

uCo +

p∑
i=1

ri∑
j=1

λqijΦ
j
i =

[
αqIn −AT

]
Φq

u − Φq
uA.

Now let:

Â =
[
αqIn −AT

]
∈ Rn×n, B̂ = −A ∈ Rn×n and

Ĉ = −𭟋q
u + CT

o Π
q

uCo +

p∑
i=1

ri∑
j=1

λqijΦ
j
i ∈ Rp×n

So, to eliminate the terms of f̄
q

(x), the problem reduces to finding the Φq
u ∈ Rp×n symmetric matrix solution

to the following Sylvester equation:
ÂΦq

u − Φq
uB̂ = Ĉ.

Based on the work of Dincic, Z.y. Li and H.Zhou (see [18] and [65]) Φq
u exists if and only Â and B̂ have

no common eigenvalues.

Remark 2.2.6 The Sylvester equation (2.16) constitutes a linear system with p×n unknowns and the same
number of equations.

Corollary 2.2.1 1) if f̄
q

rq (x) = f̄qrq (x
q
u, xo) = xquf̃

q
rq (xo), we can recover quadatically the observability of

xqu, otherwise we have to pass to the equivalence of order 3, otherwise of order 4 and so on until we can
recover the observability from the higher resonant terms.

2) In normal form (2.14), by isolating the terms in the unobservable direction xqu, the locally observablity
singularity surface is:

Sq
u =

{
x, such that

d

dxqu

(
f̄qrq (x)

)
= f̃qrq (xo) = 0

}
.

3) If f̃qrq (xo) = 0 we can have the following cases:

a) if αq < 0, xqu is detectable,
b) if αq > 0, xqu is locally unstable.
c) if αq = 0, we use the center manifold theory to analyze the stability and the detectability of xqu (see

[16, 31]).

4) The resonant terms on the last sub-dynamic ẋqu contribute nothing to the local quadratic observability.

Remark 2.2.7 For nonlinear single-output systems (p = 1 et r1 = n− 1), we have (see [10]):

f̄qrq (x) = f̄n−1 (x) =
n∑

j≥i=2

hijxixj + h1nx1xn

and

f̄qu (x) = f̄u (x) = −
n−1∑
i=1

λiφi (x) + αφu (x)−
∂φu (x)

∂x
Aox.

The following numerical example illustrates the obtained results in Section 2.2.2.
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2.2. Quadratic observability normal form for nonlinear multi-output systems

2.2.2.2 Illustrative example: Linearly unobservable case

In this section, by means of an example we will demonstrate how to use the quadratic normal form and the
efficiency of the proposed approach.

Consider the following linearly unobservable system:

ξ̇1 = 7z1 + ξ2 + 3ξ1ξ2 + 2ξ1ξ3 − 4ξ1ξ5 + 6ξ2ξ2 + 5ξ2ξ3 + 4ξ2ξ5 − 5ξ23
+9ξ3ξ5 + 4ξ4ξ2 − 2ξ4ξ3 + 2ξ4ξ5 + 4ξ25

ξ̇2 = 9ξ1 − 6ξ1ξ2 + 2ξ1ξ3 + 7ξ1ξ5 − 3ξ22 + 5ξ2ξ3 + 3ξ2ξ5 − 6ξ23 + 7ξ3ξ5

+5ξ4ξ2 + 2ξ4ξ3 + 2ξ4ξ5 − 4ξ25

ξ̇3 = −5ξ1 + 3ξ2 + 2ξ3 + 4ξ4 + 3ξ1ξ2 − 2ξ1ξ3 + 5ξ1ξ5 + 3ξ22 − 7ξ2ξ3

−2ξ2ξ5 + 2ξ23 + 9ξ3ξ5 − 6ξ4ξ2 + 5ξ4ξ3 + 2ξ4ξ5 + 2ξ25

ξ̇4 = 2ξ4 − 9ξ1ξ2 + 7ξ1ξ3 − 4ξ1ξ5 + 5ξ22 + 9ξ2ξ3 − 8ξ2ξ5 + 7ξ23 + 6ξ3ξ5

+5ξ4ξ2 − 2ξ4ξ3 + 2ξ4ξ5 + 3ξ25

ξ̇5 = 3ξ4 + 2ξ1 + 4ξ2 + 5ξ5 + 9ξ1ξ2 + 4ξ1ξ3 + 4ξ1ξ5 + 4ξ22 + 3ξ2ξ3 − 2ξ2ξ5

+6ξ23 + 3ξ3ξ5 − 8ξ4ξ2 + 8ξ4ξ3 + 2ξ4ξ5 − 4ξ25

(2.17)

endowed with two outputs y1 = ξ1 and y2 = ξ4 as the outputs and


ξ1 = z11
ξ2 = z12
ξ3 = z13
ξ4 = z21
ξ5 = z22

 .
Let xo = zo − φo(z) and xu = zu − φu(z), such that:

xo =

 x11
x12
x21

 =

 z11 − φ1
1(z)

z12 − φ1
2(z)

z21 − φ2
1(z)


xu =

[
x1u
x2u

]
=

[
z1u − φ1

u(z)
z2u − φ2

u(z)

]
and by using the homological equations we have:

φ1
1(z) = 0

φ1
2(z) = −3z11z

1
2 − 2z11z

1
3 + 4z11z

2
2 − 6(z12)

2 − 5z12z
1
3 − 4z12z

2
2

+5(z13)
2 − 9z13z

2
2 − 4z12z

2
1 + 2z21z

1
3 − 2z21z

2
2 − 4(z22)

2

+β11
11(z

1
1)

2 + β11
12z

1
1z

2
1 + β11

22(z
2
1)

2

φ2
1(z) = 0.

Then, by setting:  β11
11 = 48
β11
12 = 47
β11
22 = 0

,

 β12
11 = 663
β12
12 = 377
β12
22 = 2

,

 β13
11 = −144
β13
12 = −141
β13
22 = 0

and β21
11 = 0
β21
12 = 0
β21
22 = 0

,

 β22
11 = 192
β22
12 = 188
β22
22 = 0

we obtain the following matrices solution to the Sylvester equation

47



Chapter 2. Quadratic observability normal form for MIMO systems

Φ1
u =


49.90 −49.28 −29.30 −95.95 −1.17
−49.28 46.71 27.47 81.22 1.52
−29.30 27.47 8.50 −11.55 −1.80
−95.95 81.22 −11.55 40.83 1.79
−1.17 1.52 −1.80 1.79 −1.25


and

Φ2
u =


−186 100 27 78 37
100 −35 −25 −140 −31
27 −25 −26 −137 −8
78 −140 −137 −957 23
37 −31 −8 23 −5


these matrices cancel all quadratic terms in ż1u and ż2u and the system becomes:

ẋ11 = 7x11 + x12 + β11
11(x

1
1)

2 + β11
12x

1
1x

2
1 + β11

22(x
2
1)

2

ẋ12 = 9x11 + x13 + 97x11x
1
3 − 66x11x

2
2 + 31(x12)

2 + 23x12x
1
3 + 78x12x

2
2 + 19x13x

2
1

−26(x13)
2 + 70x13x

2
2 + 76x21x

2
2 + 36(x22)

2 + β12
11(x

1
1)

2 + β12
12x

1
1x

2
1 + β12

22(x
2
1)

2

ẋ1u = −5x11 + 3x12 + 2x13 + 4x21 + β13
11(x

1
1)

2 + β13
12x

1
1x

2
1 + β13

22(x
2
1)

2

ẋ21 = 2x21 + x22 − 9x11x
1
2 + 7x11x

1
3 − 4x11x

2
2 + 5x12x

1
2 + 9x12x

1
3 − 8x12x

2
2 + 7x13x

1
3

+6x13x
2
2 + 5x21x

1
2 − 2x21x

1
3 + 2x21x

2
2 + 3x22x

2
2 + β21

11(x
1
1)

2 + β21
12x

1
1x

2
1 + β21

22(x
2
1)

2

ẋ2u = 2x11 + 4x12 + 3x21 + 5x22 + β22
11(x

1
1)

2 + β22
12x

1
1x

2
1 + β22

22(x
2
1)

2

(2.18)

2.3 Quadratic observability normal form for nonlinear multi-input
multi-output systems

The method of normal form turns out to be a powerful device in the study of dynamical systems and this as
well as stability analysis than controllability analysis. Nevertheless, at our knowledge normal forms are not
yet used for observability analysis. In this work, we only present the method and we point out the interest
of Poincar é’s normal form for the observability analysis and observer design.
Throughout the section, we consider a nonlinear Multi Input Multi Output system described by the following
equations: {

ξ̇ = F (ξ) +G(ξ)u
y = h(ξ)

(2.19)

where ξ ∈ Rn is the state vector, y ∈ Rp and u ∈ Rm are the inputs and outputs vectors and F (ξ), G(ξ)
∈ Rn are the vector fields such that F (ξ), G(ξ) : U ⊂ Rn −→ Rn are assumed to be real analytic, such that

F (0) = 0. By setting: A =
∂F

∂ξ
(0) and B = G(0) and by Taylor series development around the equilibrium

points (ξe, ue) = 0, the system can be rewritten as:{
ξ̇ = Aξ +Bu+ f(ξ) + g(ξ)u
y = Cξ

(2.20)

where f (ξ) and g (ξ) are homogeneous polynomials of degree 2 and 1 in ξ.

Definition 2.3.1 System (2.20) is said to be quadratically equivalent to the following system modulo an
output injection M(y, u):
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2.3. Quadratic observability normal form for nonlinear multi-input multi-output systems

{
ẋ = Ax+Bu+ f̄(x) + ḡ(x)u+M(y, u)
y = Cx

(2.21)

where M(y, u) = β(y) + γ(y)u is Modulo an Output Injection (MOI) if there exists a diffeomorphism of the
form:

x = ξ − Φ (ξ) (2.22)

which transforms the quadratic part of (2.20) into the quadratic part of (2.21) modulo the output injection

M (y, u). Where Φ (ξ) ∈ Rn and β
(
y,
dy

dt
, ...,

driy

dt
ri

)
∈ Rn are a quadratic homogeneous polynomial term in

ξ, and γ (y) ∈ Rn is a linear homogeneous polynomial in ξ.

Remark 2.3.1 We note that output injection means injection of all output variables. The equivalence MOI
is justified by the fact that the output injection (see [49], [50], [70]) will be canceled in the observation error
dynamics, in fact let us consider the linearly observable system:

ẋ = Ax+Bu+ β(y) + γ(y)u

with y = Cx and let us take the following Luenberger observer (see [70]) :

˙̂x = Ax̂+Bu+ β(y) + γ(y)u+K(y − ŷ)

then the estimation error e = x− x̂ it is easy to show that the dynamic of the observation error is given by:

ė = (A−KC)e.

Now, we will give a necessary and sufficient conditions to quadratic equivalence modulo an output injection.

Proposition 2.3.1 System (2.20) is Quadratically Equivalent Modulo an Output Injection (QEMOI) to
system (2.21), if and only if there exist a diffeomorphism (Φ(z) and β(y), γ(y)) which satisfy the two following
homological equations:

(i) AΦ(z)− ∂Φ (z)

∂z
Az = f̄(z)− f(z) + β(y),

(ii) −∂Φ (z)

∂z
B = ḡ(z)− g(z) + γ(y).

Where Φ (ξ) ∈ Rn and β (y) ∈ Rn are quadratic homogeneous polynomial terms in ξ and y.

This condition ensures that the transformations appropriately handle the nonlinearities in the system,
aligning the quadratic observability normal forms through the chosen diffeomorphism and output injection
terms.

Proof 2.3.1 (Proof of Proposition2.3.1) Let x = ξ − Φ (ξ), then

ẋ = ξ̇ − ∂Φ (ξ)

∂ξ
ξ̇,

ẋ = Aξ +Bu+ f(ξ) + g(ξ)u− ∂Φ (ξ)

∂ξ
(Aξ +Bu+ f(ξ) + g(ξ)u)

(2.23)
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and by replacing x by ξ − Φ (ξ) in system (2.21), we obtain the following equality:

ẋ = A (ξ − Φ (ξ)) +Bu+ f̄ (ξ − Φ (ξ)) + ḡ(ξ − Φ (ξ))u+ β(y) + γ(y)u.

Then system (2.20) is quadratically equivalent to (2.21) if and only if their quadratic parts are equal, that is:

Aξ +Bu−AΦ (ξ) + f̄(ξ) + ḡ(ξ)u+ β(y) + γ(y)u
=

Aξ +Bu+ f(ξ) + g(ξ)u− ∂Φ[2]

∂ξ
(Aξ +Bu)

which leads to the following homological equation:

1.

f̄(ξ) + β (y) = AΦ(ξ) + f(ξ)− ∂Φ (ξ)

∂ξ
Aξ

2.

ḡ(ξ) + γ(y) = g(ξ)− ∂Φ (ξ)

∂ξ
B

These equations establish the necessary conditions for quadratic equivalence modulo an output injection.

Now, before presenting so called quadratic equivalence modulo an output injection, in the following
subsections we will consider two cases:

1. The linearly observable systems: Here, the system meets conditions that ensure observability in the
linear approximation, leading to specific behaviors and guarantees for the observer design.

2. The linearly unobservable systems: In this case, we analyze how the absence of observability in the
linear approximation affects the overall system dynamics and the potential for quadratic equivalence.

2.3.1 Linearly observable case
Throughout the this subsection, we assume that the pair (A,C) in system (2.20) is observable such that

rank


C
CA
...

CAn−1

 = n.

Under this assumption and Brunovsky’s work [14], we can give the following lemma.

Lemma 2.3.1 [14] Assume that the pair (A,C) of system (2.20) is observable. Then, there exists a linear
change of coordinates z = Tξ which transform system (2.19) into the following form:

ż1 = A1
oz

1 +B1
ou+ f1[2](z) + g1(z)u

ż2 = A2
oz

2 +B2
ou+ f2[2](z) + g2(z)u

... =
...

żp = Ap
oz

p +Bp
ou+ fp[2](z) + gp(z)u

y = Coz

(2.24)

50



2.3. Quadratic observability normal form for nonlinear multi-input multi-output systems

such that zq is the state vector observed by the output yq = zq1, where, for 1 ≤ q ≤ p, zq ∈ Rrq with
p∑

q=1
rq = n, we put

z =
[
z1 z2 . . . zp

]T ∈ Rn,

zq =
[
zq1 zq2 . . . zqrq

]T ∈ Rrq ,

Ao =


A1

o [0]r1r2 · · · [0]r1rp

[0]r2r1 A2
o

...
...

... · · ·
. . .

...
[0]r2rrp · · · 0 Ap

o

∈ Rn×n where,Aq
o =



aq1 1 0 · · · 0

aq2 0 1 0
...

...
...

. . . . . . 0

aqrq−1 0
. . . 0 1

aqrq 0 · · · 0 0


∈ Rrq×rq ,

Bo =


B1

o

B2
o
...
Bp

o

 ∈ Rn×m where, Bq
o =


bq11 bq12 · · · bq1m
bq21 bq22 · · · bq2m
...

... · · ·
...

b
qrq
1 b

qrq
2 · · · b

qrq
m

 ∈ Rrq×m ,

Co =


C1

o [0]1r2 · · · [0]1rp

[0]1r1 C2
o

...
...

... · · ·
. . .

...
[0]1r1 · · · · · · Cp

o

 ∈ Rp×n , with Cq
o =

[
1 0 · · · 0

]
∈ R1×rq ,

f (z) =
[
f1 (z) f2 (z) . . . fp (z)

]T ∈ Rn, where
fq (z) =

[
fq1 (z) fq2 (z) . . . fqrq (z)

]T ∈ Rrq ,

g (z) =
[
g1 (z) g2 (z) . . . gp (z)

]T ∈ Rn, where
gq (z) =

[
gq1 (z) gq2 (z) . . . gqrq (z)

]T ∈ Rrq ,

and where fqi (z) and gqi (z) are respectively homogeneous polynomials of degree 2 and 1 in z, for 1 ≤ q ≤ p

with
p∑

q=1
rq = n.

Remark 2.3.2 If the pair (A,C) is observable then rank


Cq

o

Cq
oA

q
o

...
Cq

oA
q(rq−1)
o

 = rq for

1 ≤ q ≤ p with
p∑

q=1
rq = n; is obviusly the yq = Cq

oz
q = zq1 for 1 ≤ q ≤ p are linearly independent components,

thus the dynamical system fulfills the observability rank condition; i. e. rank (A,C) = n.

Now, the problem that we will answer here is: what is the quadratic observability normal form asso-
ciated to system (2.20) with respect to the quadratic equivalence modulo an output injection M(y, u) =
β(y) + γ(y)u?.
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In what follows, we will present an explicit procedure to compute the diffeomorphism and output injection
in order two which will allow us to give the quadratic observability normal form for nonlinear MIMO systems.
For this, let us consider the diffeomorphism (xq = zq − Φ

q

(z)) such that Φq
1 (z) = 0 and for 1 ≤ q ≤ p with

p∑
q=1

rq = n and

Φq(z) =
[
Φq

1(z) Φq
2(z) . . . Φq

rq (z)
]T ∈ Rrq

=
[
zTΦq

1z zTΦq
2z . . . zTΦq

rqz
]T ∈ Rrq

Remark 2.3.3 We will not allow a quadratic transformation on the output, consequently, the diffeomorphism

(xq = zq − Φq (z)) is such that Φq
1 (z) = 0 for 1 ≤ q ≤ p with

p∑
q=1

rq = n.

On this basis we can establish the following theorem.

Theorem 2.3.1 The quadratic observability normal form associated to system (2.24) modulo an output

injection for 1 ≤ q ≤ p with
p∑

i=q

rq = n is given by the following equations



ẋq1 = aq1x
q
1 + x12 +

m∑
j=1

bq1j uj +∆gq1 +Mq
1

ẋq2 = aq2x
q
1 + x13 +

m∑
j=1

bq2j uj +∆gq2 +Mq
2

... =
...

ẋqrq−1 = a1rq−1x
q
1 + xqrq +

m∑
j=1

b
q(rq−1)
j uj +∆gqrq−1 +Mq

rq−1

ẋqrq = aqrqx
q
1 +

m∑
j=1

b
q(rq−1)
j uj +∆fqrq +∆gqrq +Mq

rq

where

∆fqrq = fqrq −
p∑

i=1

ri−1∑
j=1

∂Φq
rq

∂zij
(aijz

i
1 + zij+1)−

p∑
i=1

∂Φq
rq

∂ziri
airiz

i
1 +

p∑
j≥i=1

β
qrq
ij zi1z

j
1

∆gqs =
m∑
l=1

p∑
i=1

ri∑
j=2

[q]

kisjlx
i
jul

for 1 ≤ s ≤ p

Mq
s = βq

s (y) + γqs (y)u for 1 ≤ s ≤ p

with

βq
s (y) =

p∑
j≥i=1

βqs
ij x

i
1x

j
1 and γqs (y)u =

m∑
l=1

p∑
i=1

γqsil x
i
1ul.

Proof 2.3.2 (Proof of Theorem 2.3.1) As f̄q(z) = 0, ḡq(z) = 0 and xq = zq − Φq (z) , then the system
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(2.24) became:

ẋq1 = żq1 −
∂Φq

1

∂z
Aoz = aq1x

q
1 + x12 + fq1 (x) + Φ1

2(x) +
m∑
j=1

bq1j uj +∆gq1 +Mq
1

ẋq2 = żq2 −
∂Φq

2

∂z
Aoz = aq2x

q
1 + x13 + fq2 (x) + Φq

3(x)−
∂Φq

2

∂z
Aoz +

m∑
j=1

bq2j uj +∆gq2 +Mq
2

... =
...

ẋqrq−1 = żqrq−1 −
∂Φq

rq−1

∂z
Aoz = a1rq−1x

q
1 + xqrq + fqrq−1(x) + Φq

rq (x)−
∂Φq

rq−1

∂z
Aoz

+
m∑
j=1

b
q(rq−1)
j uj +∆gqrq−1 +Mq

rq−1

ẋqrq = żqrq −
∂Φq

rq−1

∂z
Aoz = aqrqx

q
1 + fqrq −

∂Φq
rq

∂z
Aoz +

m∑
j=1

b
q(rq−1)
j uj +∆gqrq +Mq

rq

For the first homological equation we obtain

Aq
oΦ

q(z)− ∂Φq (z)

∂z
Aoz = −fq(z) + βq (y) ,

with the condition Φ
q

1 (z) = 0 (i.e. yq = zq1 = xq1) and by considering the Bronouvsky structure of matrix Aq
o

and Ao, we can obtain the homological equation in a more explicit form: for 1 ≤ q ≤ p,

Φq
2 (z) = −fq1 (z) +

p∑
j≥i=1

βq1
ij z

i
1z

j
1

Φq
3 (z) =

∂Φq
2 (z)

∂z
Aoz − fq2 (z) +

p∑
j≥i=1

βq2
ij z

i
1z

j
1

... =
...

Φq
rq (z) =

∂Φq
rq−1 (z)

∂z
Aoz − fqrq−1(z) +

p∑
j≥i=1

β
q(rq−1)
ij zi1z

j
1

0 =
∂Φq

rq (z)

∂z
Aoz − fqrq (z) +

p∑
j≥i=1

β
qrq
ij zi1z

j
1

(2.25)

The (rq−1) first equations in systems (2.25) give the value of Φq (z), which cancel all the quadratic terms
in the (rq − 1) first rows of fq(z). Moreover, by using the fact that βq(y) is a free homogeneous vector field
it is also possible to cancel some terms of fqrq (z) and we obtain

∆fqrq = fqrq −
∂Φq

rq

∂z
Aoz.

For the second homological equation we have

−∂Φ
q (z)

∂z
Bo = −gq(z) + γq(y).

we have only γq(y) is a free vector field. Thus in γq(y)u = −∂Φ
q (z)

∂z
Bq

o + g
q(z), the vector field γq(y) is only

able to cancels terms in zi1 for 1 ≤ i ≤ p.
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Remark 2.3.4 We recall that resonarnt terms according to Poincaré’s works are defined by ∆fqrq and ∆gqs
for 1 ≤ q ≤ p.

Remark 2.3.5 For nonlinear single-input single-output systems (p = m = 1), we have (see [10]).

∆fqrq = ∆f1n =
n∑

j≥i=2

hijx
1
ix

1
j and

∆gqi = ∆gq1i =
n∑

j=2

kijx
1
ju for 1 ≤ i ≤ n.

2.3.2 Linearly unobservable case

In this subsection, we provide a method for constructing the quadratic observability normal form for nonlinear
multi-input multi-output systems (2.20) where the linear part is not observable. (i.e. the pair (A,C) is not
observable).
Now, assume that the linear part of system (2.20) has no observable modes ξo and nu unobservable modes
ξu. The following lemma gives the decomposition of these systems into observable and unobservable parts.

Lemma 2.3.2 Let us consider system (2.20) and assume that the pair (A,C) is unobservable such that

rank


Cq

CqAq

...
CqAq(rq−1)

 = no < n. Then after a linear change of coordinate z = Tξ which transform system

(2.20) into the following form: żo = Aozo +Bou+ fo(z) + g(z)u
żu = Auzu + Āzo +Buu+ fu(z) + gu(z)u,
y = Coz,

(2.26)

where for 1 ≤ q ≤ p with
p∑

q=1
rq = no:

z =
[
zo zu

]T ∈ Rn, with zo =
[
z1 z2 . . . zp

]T ∈ Rno ,

zq =
[
zq1 zq2 . . . zqrq

]T ∈ Rrq zu =
[
z1u z2u . . . zpu

]T ∈ Rnu

and
f (z) =

[
f1 (z) f2 (z) . . . fp (z)

]T ∈ Rn

with
f

q

(z) =
[
fq1 (z) fq2 (z) . . . fqrq (z)

]T ∈ Rrq ,

fu (z) =
[
f1u (z) f2u (z) . . . fpu (z)

]T ∈ Rnu

where fqj (z) are homogeneous polynomials of degree 2 in z, for 1 ≤ q ≤ p with
p∑

q=1
rq = no and f iu (z) are

homogeneous polynomials of degree 2 in z, for 1 ≤ i ≤ nu.

In this case, we put A =

[
Ao

Ā Au

]
∈ Rn×n, where :
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Ao =


A1

o [0]r1r2 · · · [0]r1rp

[0]r2r1 A2
o

...
...

... · · ·
. . .

...
[0]r2rrp · · · 0 Ap

o

 ∈ Rno×no , Au =


α1 0 · · · 0
0 α2 · · · 0
...

... · · ·
...

0 0 · · · αp

 ∈ Rnu×nu

and

Ā =


[
λ1
11 · · ·λ1

1r1

] [
λ1
21 · · ·λ1

2r2

]
· · ·

[
λ1
p1 · · ·λ1

prp

][
λ2
11 · · ·λ2

1r1

] [
λ2
21 · · ·λ2

2r2

]
· · ·

[
λ2
p1 · · ·λ2

prp

]
...

... · · ·
...[

λ
rp
11 · · ·λ

rp
1r1

] [
λ
rp
21 · · ·λ

rp
2r2

]
· · ·

[
λ
rp
p1 · · ·λ

rp
prp

]
∈ Rnu×no ,

Bo is a no ×m matrix Bu =


bu11 bu12 · · · bu1m
bu21 bq22 · · · bq2m
...

... · · ·
...

bunu
1 bunu

2 · · · bunu
m

 ∈ Rnu×m,

fu (z) =
[
f1u (z) f2u (z) . . . fpu (z)

]T ∈ Rnu ,

gu (z) =
[
g1u (z) g2u (z) . . . gpu (z)

]T ∈ Rnu ,

f (z) ∈ Rno , fq (z) ∈ Rrq , g (z) ∈ Rno , and gq (z) ∈ Rrq ,

with fqj (z) and gqj (z) are respectively homogeneous polynomials of degree 2 and 1 in z, for 1 ≤ q ≤ p

with
p∑

q=1
rq = no and f iu (z) and giu (z) are respectively homogeneous polynomials of degree 2 and 1 in z, for

1 ≤ i ≤ nu. Now we can make the following assumption.

Assumption 2.3.1 We assume that the pair (Cq
o , A

q
o) is observable for 1 ≤ q ≤ p with

p∑
q=1

rq = no.

Under Assumption 2.3.1, system (2.26) has nu = n−no unobservable states. After decomposing system (2.26)
into a linearly observable part zo and a linearly unobservable part zu, we define the quadratic equivalence
modulo an output injection.

Definition 2.3.2 System (2.26) is quadratically equivalent modulo the output injection βo(y) + γo(y)u and
βu(y) + γu(y)u to:  ẋo = Aoxo +Bou+ f̄(x) + ḡ(x)u

ẋu = Auxu + Āxo +Buu+ f̄u(x) + ḡu(x)u
y = Cx

(2.27)

if there exists a diffeomorphism of the form:

xo = zo − Φo(z)
xu = zu − Φu (z)

which transforms the quadratic part of (2.26) into the quadratic part of (2.27), where:

Φo(z) =
[
Φ1

o(z) Φ2
o(z) . . . Φp

o(z)
]T ∈ Rrq ,

Φq
o(z) =

[
Φq

1 (z) Φq
2 (z) . . . Φq

rq (z)
]T ∈ Rrq ,

Φu (z) =
[
Φ1

u (z) Φ2
u (z) . . . Φnu

u (z)
]T ∈ Rnu ,

βo(y) =
[
β1(y) β2(y) . . . βp(y)

]T ∈ Rnu ,

βu(y) =
[
β1
u(y) β2

u(y) . . . βnu
u (y)

]T ∈ Rnu ,
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and

γo(y)u =
[
γ1(y)u γ2(y)u . . . γp(y)u

]T ∈ Rnu ,

γu(y)u =
[
γ1u(y)u γ2n(y)u . . . γpn(y)u

]T ∈ Rnu .

Now we determine the set of homological equations which will allow us to construct the quadratic normal
form associated to system (2.26).

Proposition 2.3.2 System (2.26) is quadratically equivalent to system (2.27), modulo an output injection
if and only if, the two sets of following homological equations are satisfied

(i) For the linearly observable part, for 1 ≤ q ≤ p with
p∑

q=1
rq = no, we have


f̄q(x)− fq(x) + βq(y) = Aq

oΦ
q
o (x)−

∂Φq
o(x)

∂x0
Aoxo −

∂Φq
o (x)

∂xu

(
Āxo +Auxu

)
ḡq(x)− gq(x) + γq(y) = −∂Φ

q

∂xo
Bo −

∂Φq

∂xu
Bu

(ii) For the linearly unobservable part, for 1 ≤ q ≤ nu ≤ p, with nu + no = n, we have


f̄qu(x)− fqu(x) + βq

u(y) = αqΦq
u (x) + ĀΦq

o(x)−
∂Φq

u (x)

∂x
Ax

ḡqu(x)− gqu(x) + γqu(y)u = −∂Φ
q
u (z)

∂xo
Bo −

∂Φq
u(x)

∂xu
Bu

Theorem 2.3.2 The normal form with respect to the quadratic equivalence modulo an output injection of

the system (2.26) for 1 ≤ q ≤ p with
p∑

i=q

rq = no is given by



ẋq1 = aq1x
q
1 + x12 +

m∑
j=1

bq1j uj +∆gq1 +Mq
1

ẋq2 = aq2x
q
1 + x13 +

m∑
j=1

bq2j uj +∆gq2 +Mq
2

... =
...

ẋqrq−1 = a1rq−1x
q
1 + xqrq +

m∑
j=1

b
q(rq−1)
j uj +∆gqrq−1 +Mq

rq−1

ẋqrq = aqrqx
q
1 +

m∑
j=1

b
qrq
j uj +∆fqrq +∆gqrq +Mq

rq

ẋqu = αqxqu +

p∑
i=1

ri∑
j=1

λqijx
j
i +

m∑
j=1

bqjuj +∆fqu +∆gqu(x)u+Mq
u

(2.28)

where
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∆fqrq = fqrq (x)−
∂Φq

rq (x)

∂xo
Aoxo −

∂Φq
rq (x)

∂xu
(Au + Ā)xu +

p∑
j≥i=1

β
qrq
ij xi1x

j
1

∆fqu = fqu (x) + αqΦq
u (x)−

p∑
i=1

ri∑
j=1

λqijΦ
q
j(x)−

∂Φq
u(x)

∂x
Ax

∆gqi =
m∑
l=1

p∑
s=1

rs∑
j=2

[q]

ksijlx
s
ju1 +

m∑
l=1

nu∑
i=2

[q]

kilx
i
uul

∆gqu =
m∑
l=1

p∑
i=1

ri∑
j=2

kiqjlx
i
jul

+
m∑
l=1

nu∑
i=2

kiql x
i
uul

Proof 2.3.3 (Proof of Theorem2.3.2) For the linearly observable part, the proof is exactly the one given
in theorem 1. For the linearly unobservable part, we have for 1 ≤ q ≤ nu ≤ p:

f̄qu(z)− fqu(z) + βq
u(y) = αqΦq

u (x) +

p∑
i=1

ri∑
j=1

λqijΦ
q
j(x)−

∂Φq
u (z)

∂z
Ax,

ḡqu(x)− gqu(x) + γqu(y)u = −∂Φ
q
u (x)

∂xo
Bo −

∂Φq
u(x)

∂xu
Bu.

Since f̄qu(x) = ḡqu(x) = 0, then, to cancel all quadratic terms in x on the linearly unobservable sub-dynamics
ẋqu, Φ

q[2]
u (x) must satisfy the following equation:

−fqu(x) + βq
u(y) = αqΦq

u(x) +

p∑
i=1

ri∑
j=1

λqijΦ
q
j(x)−

∂Φq
u (x)

∂x
(Ax)

which in general has no solutions.

Now we will give the condition for the existence of the diffeomorphism Φq
u (x) which cancels all quadratic

terms in sub-dynamic ẋqu. As Φq
i (x) , f (x) , and βqu (y) are quadratic homogeneous polynomials terms in x,

then we can rewritten in the following matrix from

Φq
i (x) = xTΦq

ix , f
q
u (x) = xTf q

ux

and

βq
u (y) = yTβq

uy = Cq
o
T βquCq

o

where Φq
i ,f

q
u and βqu are symmetric matrices. Then we have:

dΦq
i (x)

dt
=

d
(
xTΦq

ix
)

dt
=
dxT

dt
Φq

ix+ xTΦq
i

dx

dt

= (Ax)
T
Φq

ix+ xTΦq
i (Ax)

= xT (ATΦq
i +Φq

iA)x.
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Let xji = zji − Φ
j

i (x) and xqu = zqu − Φ
q

u (x) , then the sub-dynamic ẋqu becomes

ẋqu = żqu − dΦq
u (z)

dt

= αqzqu +

p∑
i=1

ri∑
j=1

λqijz
j
i + fqu (z)− dΦq

u (z)

dt

= αq(xqu +Φq
u(x)) +

p∑
i=1

ri∑
j=1

λqij(x
j
i +Φj

i (x)) + fqu(x)−
dΦq

u (x)

dt

= αqxqu +

p∑
i=1

ri∑
j=1

λqijx
j
i + fqu (x) + αqΦq

u (x) +

p∑
i=1

ri∑
j=1

λqijΦ
j
i (x)−

dΦq
u (x)

dt
,

or equivalently:

ẋqu = αqxqu +

p∑
i=1

ri∑
j=1

λqijx
j
i + f̄qu (x) + βqu (y)

which implies that

fqu (xqu) + αqΦq
u (x) +

p∑
i=1

ri∑
j=1

λqijΦ
j
i (x)−

dΦq
u (x)

dt
= f̄qu (x) + βq

u (y)

which is equivalent in a matrix form to

xTf q
ux+ αqxTΦq

ux+

p∑
i=1

ri∑
j=1

λqijx
TΦj

ix− xT (ATΦq
u +Φq

uA)x = xT f̄
q
ux+ xTCTβquCx

xT

−fqu + CqT
o βq

uC
q
o +

p∑
i=1

ri∑
j=1

λqijΦ
q
j

x = xTαqΦq
ux− xT (ATΦq

u +Φq
uA)x.

As f̄
q

(x) = 0

−xTf q
ux+ xTCT

o β
quCox+

p∑
i=1

ri∑
j=1

λqijx
TΦj

ix = αqxTΦq
ux− xT (ATΦq

u +Φq
uA)x

−f q
u + CT

o β
quCo +

p∑
i=1

ri∑
j=1

λqijΦ
j
i =

[
αqIn −AT

]
Φq

u −Φq
uA.

Now let
Â =

[
αqIn −AT

]
∈ Rn×n,

B̂ = −A ∈ Rn×n

and

Ĉ = −f q
u + CT

o β
quCo +

p∑
i=1

ri∑
j=1

λqijΦ
j
i ∈ Rp×n

So to eliminate the terms of fqu (z), the problem reduces to find the Φq
u ∈ Rp×n symmetric matrix solution

to the following Sylvester equation
ÂΦq

u −Φq
uB̂ = Ĉ. (2.29)
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Remark 2.3.6 The Sylvester equation (2.29) is a linear system with p× n unknowns and the same number
of equations.

Theorem 2.3.3 In quadratic observability normal form (2.28) for system (2.24), we can eliminate the
quadratic terms on the sub-dynamic unobservable mode, if and only if the Sylvester equation (2.29) has
a unique solution Φq

u ∈ Rp×n for any Ĉ ∈ Rp×n. This is equivalent to ∆fu
q = 0, if and only if Â and B̂ do

not share any eigenvalue.

Proof 2.3.4 (Proof of Theorem2.3.3) Assume that Â and B̂ do not share any eigenvalue. Let Φq
u be a

solution to the equation ÂΦqT
u −Φq

uB̂ = 0. Then ÂΦqT
u = Φq

uB̂ , which can be lifted to (Â)k Φq
u = Φq

u(B̂)k

for each k ≥ 0 by mathematical induction. Consequently, P (Â)Φq
u = Φq

uP (B̂) for any polynomial P . In
particular, let P the characteristic polynomial of Â, and according Cayley-Hamilton theorem, P (Â) = 0, from
the spectral mapping theorem we have λ(P (B̂)) = P (λ(B̂)) , where λ(·) denotes the spectrum of a matrix.
Since Â and B̂ do not share any eigenvalue, P (σ(B̂)) does not contain 0, and hence P (B̂) is nonsingular.
Thus Φu = 0.

Now assume that Â and B̂ share an eigenvalue λ. Let VÂ be a corresponding right eigenvector for Â , VB̂
be a corresponding left eigenvector for B̂ and Φq

u = VÂV
∗
B̂

. Then Φu ̸= 0, and

ÂΦqT
u −Φq

uB̂ = ÂVÂV
∗
B̂
− VÂV

∗
B̂
B̂ = λVÂV

∗
B̂
− λVÂV

∗
B̂
= 0.

Then Φq
u is a nontrivial solution to the equation

ÂΦqT
u − Φq

uB̂ = 0, thus justifying the "only if" part of the theorem. Consequently, the Sylvester equation
(2.29) has a unique solution Φq

u ∈ Rp×n for any Ĉ ∈ Rp×n if and only if Â and B̂ do not share any eigenvalue.
In other words, The Sylvester equation (2.29) has a unique solution Φq

u ∈ Rp×n for any Ĉ ∈ Rp×n if and
only if Â and B̂ do not share any eigenvalue. Hence it is uniquely solvable for any given Ĉ if and only if the
homogeneous equation ÂΦqT

u −Φq
uB̂ = 0 admits only the trivial solution 0.

Discution 2.3.1 1) if ∆f
q

rq is functions of xqu, we can recover quadatically the observability of xqu, other-
wise we have to pass to the equivalence of order 3, otherwise of order 4 and so on until we can recover
the observability from the higher resonant terms.

2) From the terms xjix
q
u (i, j ∈ [1, no] ) of the normal form (2.28), it is also possible to recover locally the

quadratic observability of xqu for 1 ≤ q ≤ p with
p∑

i=q

rq = no.

3) In normal form (2.28), by isolating the terms in the unobservable direction xqu, the locally observablity
singularity surface is:

Sq
u =

{
x, such that

d

dxqu

(
∆fqrq (x)

)
= f̃qrq (xo, x

q
u) = 0

}
.

4) If f̃qrq (xo, x
q
u) = 0 we can have the following cases:

a) if αq < 0, xqu is detectable,

b) if αq > 0, xqu is locally unstable.

c) if αq = 0, we use the center manifold theory to analyze the stability and the detectability of xqu (see
[16, 31]).

5) The resonant terms on the last sub-dynamic ẋqu, brings nothing for the local quadratic observability.
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Remark 2.3.7 For nonlinear single-output systems (p = 1), we have (see [10])

∆fqrq = ∆f1n−1 =
n∑

j≥i=2

hijx
1
ix

1
j + h1nx

1
1x

1
n and

∆fqu = ∆f1u = f1n(x) + α1Φ1
u (x) +

n−1∑
i=1

λ1iΦ
1
i (x)−

∂Φ1
u

∂x
A1

ox

∆gqi = ∆gq1i =
n∑

j=2

kijx
1
ju

∆gqu = ∆g1u =
n∑

i=2

k1ni x1iu

for 1 ≤ i ≤ n− 1.

2.4 Sliding mode observer design
In this section, from the results of chapter2, we present a method for observer design that is based on the
step-by-step sliding modes approach. First, we require the following assumption:

Assumption 2.4.1 Assumme that the resonant terms f̄qrq (x) on the sub-dynamic
dxq

rq

dt has the following
form:

f̄qrq (x) = f̄qrq (xu, xo) = xquf̃
q
rq (xo) .

Now, we propose the following sliding mode observer ([101], [80], [22]) for 1 ≤ q ≤ p with
p∑

i=q

rq = no

dx̂q
1

dt = aq1x
q
1 + x̂q2 + βq

1 (y) + δq1sign(x
q
1 − x̂q1)

dx̂q
2

dt = aq2x
q
1 + x̂q3 + βq

2 (y) + Eq
1δ

q
2sign(x̃

q
2 − x̂q2)

... =
...

dx̂q
rq−1

dt = a1rq−1x
q
1 + x̂qrq + βq

rq−1 (y) + Eq
(rq−2)δ

q
(rq−1)sign(x̃

q
rq−1 − x̂qrq−1)

dx̂q
rq

dt = aqrqx
q
1 + x̂quf̃

q
rq (x̃o) + βq

rq (y) + Eq
(rq−1)δ

q

rq
sign(x̃qrq − x̂qrq )

dx̂q
u

dt = αq
ux̃

q
u +

p∑
i=1

ri∑
j=1

λqij x̃
j
i + f̄qu(x̃u, x̃o) + βq

uq
(y) + Eq

uδ
q
usign (x̃

q
u − x̂qu)

(2.30)

with the following auxilliary states for 1 ≤ q ≤ p.

x̃q2 = x̂q2 + Eq
1 δ

q
1sign

(
x11 − x̂q1

)
x̃q3 = x̂q3 + Eq

2δ
q
2sign (x̃

q
2 − x̂q2)

... =
...

x̃qrq = x̂qrq + Eq
(rq−1)δ

q

(rq−1)
sign(x̃qrq−1 − x̂qrq−1)

x̃qu =
Eq

s

f̃q
rq (xo)+Eq

s−1
Eq

rqδ
q

rq
sign(x̃qrq − x̂qrq )

(2.31)

which respected the following conditions:

• if x̂q1 = xq1 then Eq
1 = 1, otherwise Eq

1 = 0,

• if x̂q2 = x̃q2 and Eq
1 = 1 then Eq

2 = 1 otherwise Eq
2 = 0,
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• .
...

• if x̂qrq = x̃qrq and Eq
1 = Eq

2 = · · · = Eq
rq−1 = 1 then Eq

rq = 1 otherwise Eq
rq = 0, and

• if f̃qrq (x̃o) ̸= 0 then Eq
s = 1 otherwise Eq

s = 0.

Which leads to the following proposition.

Proposition 2.4.1 Let us consider the observer given by equation (2.30) with the auxiliary equation (2.31),
then for any initial condition x =

(
xTo , x

T
u

)T
, there exists a scalar τ > 0 such that ∀t > τ

x̂o (t) = x̃o (t) = x (t) , and
lim

t−→+∞
∥xu (t)− x̂u (t)∥ = 0 for f̃rq (xo) ̸= 0.

Proof 2.4.1 Let us consider the observer error eq = xq − x̂q, then the proof will be realized in the following
steps:

• First step: assuming that Eq
1 = 0 (if Eq

1 = 1, we directly move to the next step), the observation error
dynamic

(
ėq = ẋq − ˙̂xq

)
is:

ėq1 = eq2 − δq1sign (x
q
1 − x̂q1)

ėq2 = eq3
... =

...
ėqrq−1 = eqrq
ėqrq = xquf̃

q
rq (xo)− x̂quf̃

q
rq (x̂o)

ėqu = αq
ue

q
u −

p∑
i=1

ri∑
j=1

λqije
j
i + f̄qu(xu, xo)− f̄qu(x̂u, x̂o)

Thanks to the finite time convergence of the sliding mode, if δq1 > ∥eq2∥max, there exists t1 ⩾ 0 such that
∀t ⩾ t1, x̂

q
1 = xq1, then Eq

1 = 1 and ėq1 = 0. Moreover, we have:

eq2 = δq1sign (x
q
1 − x̂q1) and

x̃q2 = x̂q2 + Eq
1δ

q
1sign

(
x11 − x̂q1

)
.

• At (rq − 1) step: as x̂qrq−2 = xqrq−2, then Eq
rq−2 = 1 and ėqrq−2 = 0 for all t ⩾ trq−2 and we have:

eqrq−1 = Eq
rq−3δ

q

rq−2
sign(x̃qrq−2 − x̂qrq−2) and

x̃qrq−1 = x̂qrq−1 + Eq
rq−2δ

q
rq−2sign(x̃

q
rq−2 − x̂qrq−2).

Till now we have recovered the state xqo states for 1 ≤ q ≤ p with
p∑

i=q

rq = no. Now we can recover the

state xqu through sub-dynamic ẋqrq as follows:

If δqrq > ∥equ∥max, there exists trq > trq−1 > · · · > t1 such that ∀t ⩾ trq , x̂qrq = x̃q
rq

= xq
rq
, then Eq

rq = 1

and ėqrq = 0. We have also:

0 = equf̃
q
rq (x̃o)− Eq

rq−1δ
q

rq
sign

(
x̃qrq − x̂qrq

)
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and

x̃qu = x̂qu +
Eq

rq
δq
rq

f̃q
rq (x̃o)

sign
(
x̃qrq − x̂qrq

)
. (2.32)

In order to take the singularity (f̃qrq (x̃o) = 0) into account, we introduce Eq
s = 1

if f̃qrq (x̃o) ̸= 0 otherwise Eq
s = 0, which modifies equation (2.32) into the following form:

x̃qu = x̂qu +
Eq

sE
q
rq

δqrq
f̃q
rq (x̃o)+Eq

s−1
sign

(
x̃qrq − x̂qrq

)
.

If δqrq > ∥equ∥max, there exists tu > trq > · · · > t1 such that ∀t ⩾ tu, x̂qu = x̃q
u
= xq

u
, then Eq

s = 1 and
ėqu = 0.

• So we obtain:

ėq1 = eq2 − δq1sign (x
q
1 − x̂q1) = 0

ėq2 = eq3 − Eq
1δ

q
2sign (x̃

q
2 − x̂q2) = 0

... =
...

ėqrq−1 = eqrq − Eq
rq−2δ

q

rq−1
sign(x̃qrq−1 − x̂qrq−1) = 0

ėqrq = f̃qrq (xo)− Eq
SE

q
rq−1δ

q

rq
sign(x̃qrq − x̂qrq ) = 0

ėqu = αq
ue

q
u −

p∑
i=1

ri∑
j=1

λqije
j
i + f̄qu (xu, xo)− f̄qu (x̂u, xo)− Eq

uδ
q
usign (x̃

q
u − x̂qu) = 0

and consequently lim
t−→+∞

∥xu (t)− x̂u (t)∥ = 0 for f̃rq (xo) ̸= 0.

2.4.1 Application to Generalized Lorenz System

2.4.1.1 Generalized Lorenz System description

Consider the generalized Lorenz system [84] with five states, characterized by a set of coupled nonlinear
differential equations. This system extends the classic Lorenz equations to include two additional states,
allowing for more complex dynamics.
The system dynamics are described by [84]:

ξ̇1 = σ(ξ2 − ξ1) + αξ3ξ5
ξ̇2 = ρξ1 − ξ2 − ξ1ξ3
ξ̇3 = −βξ3 + ξ1ξ2 + γξ4ξ5
ξ̇4 = −δξ4 + ξ2ξ3
ξ̇5 = −τξ5 + ηξ1ξ4

(2.33)

where:

• ξ1, ξ2, ξ3, ξ4 and ξ5are the state variables, representing different dimensions of the system’s dynamics.

• σ, ρ, and β are the classic Lorenz param eters, typically chosen to be σ = 10, ρ = 28, and β = 8
3 , which

are values known to produce chaotic behavior.

• α = 0.8, γ = 1.5, δ = 3, τ = 2, and η = 2 are additional parameters introduced to create coupling
between states and to add complexity to the system’s dynamics.
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This five-dimensional generalized Lorenz system introduces nonlinear coupling terms such as ξ3ξ5, ξ4ξ5, and
ξ1ξ4, which increase the richness of the dynamics by allowing interactions across different states. The sys-
tem’s nonlinearity and dimensionality make it a strong candidate for studying chaotic synchronization, as
well as for applications in fields that require complex, unpredictable behavior. The system is equipped with
two outputs, which can be used to observe and synchronize the dynamics:y1 = ξ1 and y2 = ξ4. The choice of
two outputs allows for effective monitoring and potential synchronization of the system in applications such
as secure communication or chaos-based control.

2.4.1.2 Quadratic observability normal form calculation

Now, consider the following change of coordinates:
z11 = ξ1
z12 = ξ1 + 10ξ2
z1u = ξ3
z21 = ξ4
z2u = ξ5

=⇒


ξ1 = z11
ξ2 = − 1

10z
1
1 + 1

10z
1
2

ξ3 = z1u
ξ4 = z21
ξ5 = z2u

which transforms the system into the Brunovsky normal form:
ż11 = −11z11 + z12 + 0.8z1uz

2
u

ż12 = 270z11 − 10z11z
1
u + 0.8z1uz

2
u

ż1u = − 8
3z

1
u +− 1

10

(
z11
)2

+ 1
10z

1
1z

1
2 + 1.5z21z

2
u

ż21 = −3z21 +− 1
10z

1
1z

1
u + 1

10z
1
2z

1
u

ż2u = −2z2u + 2z11z
2
1

(2.34)

It’s easy to show that the pair (A,C) is not observable in 2 directions, with:

A =


−11 1 0 0 0
270 0 0 0 0
0 0 − 8

3 0 0
0 0 0 −3 0
0 0 0 0 −2

 , C =

[
1 0 0 0 0
0 0 0 1 0

]

Now, consider the change of coordinates xo = zo − φo(z) and xu = zu − φu(z), such that:

xo =

 x11
x12
x21

 =

 z11 − φ1
1(z)

z12 − φ1
2(z)

z21 − φ2
1(z)


xu =

[
x1u
x2u

]
=

[
z1u − φ1

u(z)
z2u − φ2

u(z)

]

and by using the homological equations we have:

φ1
1(x) = φ2

1(x) = 0

φ1
2(x) = −f11 (x) + β11

11

(
x11
)2

+ β21
11

(
x21
)2

+ β11
12x

1
1x

2
1

= −0.8x1ux
2
u + β11

11

(
x11
)2

+ β21
11

(
x21
)2

+ β11
12x

1
1x

2
1

β11
11 = β21

11 = β11
12 = 0
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For x1u and x2u the Sylvester equation gives φ1
u(x) = − 3

25x
1
1x

1
2, βu1

11 = − 323
10 and βu1

22 = βu1
12 = 0.

φ2
u(x) = 0, βu2

12 = −2 and βu2
11 = βu2

22 = 0.

as solution of: 
− 8

3φ
1
u(x)−

∂φ1
u(x)
∂x Ax+ f1u(x) + βu1

11

(
x11
)2

+ βu1
22

(
x21
)2

+ βu1
12 x

1
1x

2
1 = 0

−2φ2
u(x)−

∂φ2
u(x)
∂x Ax+ f2u + βu2

11

(
x11
)2

+ βu2
22

(
x21
)2

+ βu2
12 x

1
1x

2
1 = 0

and we obtain the following observability quadratic normal form of the generalized Lorentz system:
ẋ11 = −11x11 + x12
ẋ12 = 270x11 − 10x11x

1
u − 4.533x1ux

2
u

ẋ1u = − 8
3x

1
u

ẋ21 = −3x21 − 1
10x

1
1x

1
u + 1

10x
1
2x

1
u

ẋ1u = −2x2u

(2.35)

In normal form (2.35), thanks to the resonant terms −10x11x
1
u and −4.533x1ux

2
u on the dynamics ẋ12ẋ12 and

− 1
10x

1
1x

1
u and 1

10x
1
2x

1
u on the dynamics ẋ21 we recover respectively the quadratic observability of x2u and x1u.

And, by isolating the terms in the unobservable direction xqu, the locally observablity singularity surface is:

S1
u =

{
x, such that − 10x11 − 4.533x2u = 0

}
.

and

S2
u =

{
x, such that ,− 1

10
x11 +

1

10
x12 = 0

}
.

2.4.1.3 sliding mode observer of Generalized Lorentz

Now, we give the sliding mode observerof system (2.35) as follows:

˙̂x11 = −11x11 + x̂12 + δ11sign(x
1
1 − x̂11)

˙̂x12 = 270x11 − 10x11x̂
1
u − 4.533x̂1ux̂

2
u + E1

1δ
1
2sign(x̃

1
2 − x̂12)

˙̂x1u = − 8
3 x̃

1
u + E1

uδ
1
usign(x̃

1
u − x̂1u)

˙̂x21 = − 8
3 x̃

1
u − 1

10x
1
1x̂

1
u + 1

10 x̃
1
2x̂

1
u + δ21sign(x̃

2
1 − x̂21)

˙̂x2u = −2x̃2u + E2
uδ

2
usign(x̃

2
u − x̂2u)

(2.36)

In system (2.36) the auxiliary components z̃ji are determined algebraically:

x̃12 = x̂12 + E1
1δ

1
1sign

(
x11 − x̂11

)
x̃1u = x̂1u +

10E1
Sδ21

x1
2−x1

1+E1
S−1

sign
(
x̃21 − x̂21

)
x̃2u = x̂2u − E1

1E
2
Sδ21

10x1
1+4.533x̃1

u+E2
S−1

sign
(
x̃12 − x̂12

)
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with the following conditions:

if x11 = x̂11 and x21 = x̂21 then E1
1 = 1, otherwise E1

1 = 0,

if x̃12 = x̂12 and x11 = x̂11 and x1u = x̂1u then E2
u = 1 otherwise E2

u = 0,

if x̃12 = x̂12 and x11 = x̂11 and x1u = x̂1u and x2u = x̂2u then E1
u = 1 otherwise E1

u = 0.

We can see that when x12 − x11 = 0, x̃1u tends to infinity and when −10x11 − 4.533x2u = 0, x̃2u tends to infinity,
meaning that observability singularity occurs. Thus, to avoid the explosion of x1u and x2u, we introduce a
filter E1

S and E2
S as follows:

if − 10x11 − 4.533x2u = 0 then E2
s = 0 otherwise E2

s = 1.

if x12 − x11 = 0 then E1
s = 0 otherwiseE1

s = 1.

In this case x̃1u and x̃2u become:

x̃1u = x̂1u +
10E1

Sδ21
x1
2−x1

1+E1
S−1

sign
(
x̃21 − x̂21

)
x̃2u = x̂2u − E1

1E
2
Sδ21

10x1
1+4.533x̃1

u+E2
S−1

sign
(
x̃12 − x̂12

)
.

Remark 2.4.1 In order to not lose the observability for a long time at singularity surface, we must set
correctly Ei

S by taking Ei
S = 0 during a short period of time.

2.4.1.4 Simulation results

For these simulations, we have considered the following initial conditions: ξ1 = 10, ξ2 = 20, ξ3 = 30 and
x̂11 = ξ̂1 = 0, x̂12 = ξ̂1 + 10ξ̂2 = 0, x̂1u = ξ̂3 = 10.
Figures 1.4a and 1.4b display the simulation results obtained for the Lorenz system. Figure 1.4 shows the
dynamics of both the observer and the Lorenz system over 10 seconds. Figure 1.5 presents the estimation
error. It can be observed that the state x11 converges to x̂11 in a finite time, and for the other states, convergence
is achieved within 1, 6 seconds.

2.5 Conclusion
In conclusion, this chapter presents a pivotal contribution to the field through the development of the
Quadratic Observability Normal Form (QNF) for multi-input multi-output (MIMO) systems. This form
is essential for comprehensively understanding the observability properties of complex nonlinear systems,
providing a systematic framework to evaluate whether all states can be accurately estimated from available
inputs and outputs.

Starting from Section 2.3, we explored the concept of quadratic observability in nonlinear multi-output
systems, differentiating between linearly observable and unobservable cases. This analysis highlighted the
structural dependencies inherent to observability, offering critical insights that inform both control strategies
and state estimation techniques.

In Section 2.4, we extended our investigation to nonlinear MIMO systems, further illustrating the versa-
tility and importance of the QNF. By analyzing both observable and unobservable scenarios, we emphasized
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the necessary conditions for effective state recovery, thus enhancing our understanding of system dynamics.

Section 2.5 introduced the design of sliding mode observers, underscoring the importance of the principles
derived from the QNF. The methodologies presented for observer design are closely linked to the observability
characteristics discussed earlier, ensuring that our state estimation techniques are robust and reliable.

Overall, the methodology for the QNF is a foundational element of this thesis, significantly enhancing our
ability to analyze and design control systems for MIMO structures. By clarifying observability properties, we
pave the way for more effective state estimation strategies, ultimately improving the performance and relia-
bility of complex dynamic systems in real-world applications. This chapter not only lays a strong groundwork
for future research in quadratic observability but also provides valuable tools for addressing the challenges
associated with nonlinear system dynamics, fostering innovative approaches to managing the intricacies of
MIMO systems.
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Chapter 3

Aplicacion to cardiovascular system
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3.1 Introduction

In this chapter, we summarize the functioning of the heart in order to provide an adequate description of the
dynamic behavior of the cardiovascular system.

The human cardiovascular system is a complicated and essential ensemble that controls blood circulation
to ensure the transportation of nutrients, oxygen, and carbon dioxide as well as the removal of metabolic
waste. Its operation depends on precise interactions between the anatomy and physiology of the cardiac
cycle, but it can also malfunction and result in diseases such valvulary disorders.

This chapter offers a comprehensive approach to modeling the cardiovascular system by first describing
the anatomy and physiology of the cardiac cycle and then introducing common diseases. In order to simplify
the cardiovascular dynamic and enable a more accessible analysis of the system’s characteristics, an electrical
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equivalent model will thereafter be presented. The mathematical model will be developed using the concept
of elasticity, a main variable in cardiac mechanics.

Next, we will examine the normal quadratical form of the cardiovascular model, a mathematical frame-
work that makes it easier to analyze the system’s stability and dynamic properties. Finally, an analysis of
observability and the idea of observers, even in a sliding mode, will be covered in detail. These methods are
crucial for reconstructing the system’s internal data from external measurements.

In general terms, it is possible to describe the CVS as a distribution grid (blood vessels) that supplies
oxygenated blood to the organs by means of a pump (heart). The heart generates the pressure necessary to
pump the blood that travels through the body’s cells from the aorta and through the arteries. First, through
the arteries, the systemic circulation is generated, which is responsible for the transport and distribution of
oxygenated blood from the heart to the capillaries of the body and then through the veins the pulmonary
circulation is generated, which is responsible for returning the poorly oxygenated blood from the blood
capillaries to the heart to be oxygenated again in the lung.

Figure 3.1: Blood flow of the human heart.

The heart is divided into two parts, the right and left parts, composed of an auricle and a ventricle,
where the auricles act as preloading cameras and the ventricles perform the ejection function of a pump. The
cameras are also divided by unidirectional valves that prevent backflow between the cameras (atrial valves)
and outflow from the ventricles (semilunar or ventricular valves).

3.2 Presentation of cardiovascular system

3.2.1 State of the art of cardiovascular system models

The state of the art in the field of cardiovascular system encompasses a diverse range of research and advance-
ments. Over the years, significant progress has been made in modeling the cardiovascular system, driven by
advancements in computational technology, imaging techniques, and a better understanding of cardiovascular
physiology. These mathematical models are becoming increasingly important in research and clinical appli-
cations. Researchers have explored various approaches to enhance better understanding of cardiovascular
physiolog [46, 92, 23, 99]. By reviewing the existing literature and examining the latest developments, this
section provides an overview of the current state of the art dedicated to mathematical models of the CVS
from different perspectives. Below are the main methodologies that have been used:
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Lumped parameter models: Describe in a simplified manner the predominant behavior of each of the
components involved in the CVS. These models simplify the cardiovascular system by representing it as a
series of discrete components (e.g., resistances, capacitances, and inductances) without considering spatial
variations. Commonly used for simulating overall hemodynamics and evaluating system dynamics in a sim-
plified manner [17, 61, 79, 94, 23, 63, 45, 26, 90, 62, 47, 68, 13].

Distributed parameter models: Describing the cardiovascular system including the one, two or three
dimensional models based on finite element software. Unlike lumped models, distributed parameter models
take into account the spatial distribution of properties and variables throughout the cardiovascular system.
They often use partial differential equations to describe blood flow and pressure variations. Commonly used
for detailed analysis of blood flow in specific vessels or regions, such as studying wave propagation and re-
flections in arterial systems [79, 89, 86, 74].

Modeling from a hydraulic approach: Describing the cardiovascular system is similarly to hydraulic
systems, focusing on fluid dynamics principles. It examines the flow of blood as a viscous, incompressible
fluid through elastic and rigid vessels. Often employed in studies of blood flow dynamics, pressure drops, and
resistance in the vasculature [96, 82].

Computational Models: Describing the cardiovascular system is similarly to using computational al-
gorithms and simulations to represent the behavior of the cardiovascular system. They can be either lumped
or distributed and often rely on numerical methods to solve complex equations. Commonly used in research
and clinical settings for predicting hemodynamic responses, optimizing treatment strategies, and simulating
surgical procedures [19, 83, 81, 75].

Modeling from the Energy Approach: Describes the cardiovascular system emphasizing the con-
servation of energy principles within the cardiovascular system, analyzing how energy is transformed and
dissipated as blood flows through various components. Commonly used for understanding energy losses due
to friction and turbulence, as well as the work done by the heart [38, 35].

Multiscale Models: Describing the cardiovascular system in these representation integrate processes
at multiple scales, from cellular and tissue levels to organ-level dynamics. They account for the interactions
between different biological scales to provide a comprehensive understanding of cardiovascular function [33,
78].

This section is dedicated to describing the dynamic behavior of the CV system from both a medical and
control theory perspective.

3.2.2 Anatomy and physiology of the cardiac cycle

The dynamic behavior of the cardiac cycle can be described as a distribution network of blood vessels to
supply oxygenated and deoxygenated blood throughout the body, thanks to the heart behaving as a pump
and its pressure–volume (PV) loops.

• Blood circulation pathway

The path followed by the blood is presented as a closed circuit, starting at the heart, which is responsible
for pumping blood. This is illustrated in Figure 3.2 through a schematic cross-section of the heart, consisting
of double atria-ventricular chambers on both sides. Where, the ventricles act as the primary pumps, while
the atria serve as preload chambers that regulate the distinct paths of blood circulation. Specifically, the
right side of the heart regulates blood flow in to the pulmonary artery, which carries to the lungs, where
blood is oxygenated in the lungs and then it returns to the left side of the heart entering through the left
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atrium. Subsequently, the oxygen-rich blood is pumped by the left ventricle through the aorta, regulating
blood circulation to the rest of the body [93]. Additionally, it is important to note that blood flows in one
direction only, due to one-way valves being situated between the chambers to prevent reflux, and at the
output of the ventricles, called semilunar valves as shown in Figure 3.2.

• Cardiac cycle phases

From a functional point of view, the cardiac cycle is divided into two alternating phases: diastole (di-
latation period) and systole (contraction period), which are simplified into four stages as shown in Figure
3.2:

1 The first stage is atrial diastole and the beginning of ventricular systole, during which the atria relax
while the ventricles contract and the atrioventricular valves close. This increases the pressure inside
the ventricles but not enough to open the semilunar valves.

2 The second stage is ventricular diastole, when the pressure inside the ventricles rapidly decreases, the
atrioventricular valves open, and the chambers passively fill due to their relaxation combined with atrial
systole, during which the atria contract to fill the ventricles.

3 The third stage is atrial systole, during which the pressure in the ventricles rises until it exceeds that
of the arteries. This leads to the opening of the semilunar valves and the ejection of blood into the
pulmonary artery, marking the beginning of systemic circulation.

4 The last stage marks the end of ventricular systole and the start of the ventricular and atrial diastole.
During this phase, the pressure in the ventricles decreases rapidly, and all chambers passively fill due
to their relaxation. This transition leads into a new cardiac cycle, beginning with atrial systole.

An alternative method to graphically describe and characterize the cardiac cycle is through the use of a
left ventricle (PV) loop. This loop illustrates the relationship between left ventricular pressure (LVP) and left
ventricular volume (LVV) across the four stages of the cardiac cycle. It enables the identification of changes
in cardiac function, including the factors related to preload and afterload, as well as heart contractility (for
more information see[99]).

1 2 3 4

Semilunar valves closed 

and blood flows into atria.

Atrial diastole
Chamber relax and blood 

fils ventricles passively.

Ventricular diastole
Ventricular contraction 

pushes AV valves closed.

Atrial systole
Semilunar valves open and 

blood is ejected.

Ventricular systole

Figure 3.2: Cardiac cycle of circulatory system.
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3.2.3 Valve pathologies

Valvular heart diseases are a leading cause of cardiovascular morbidity and mortality worldwide [77, 32].
Among the most frequent valve pathologies are those impacting the aortic and mitral valves. These patholo-
gies often result in both stenosis (narrowing) and regurgitation (impaired closure).

Aortic valve stenosis refers to the insufficient opening of the valve during systole, often caused by congen-
ital abnormalities or the progressive buildup of calcium on the valve leaflets with age [99, 1, 37]. Conversely,
a malfunction in the aortic valve closure, known as aortic valve regurgitation, results in backward leakage
into the left ventricle during diastole. This condition shares similar causes with aortic valve stenosis [1].

Both aortic stenosis and regurgitation lead to the hypertrophy of the left ventricle in response to increased
stress, resulting in the thickening of the left ventricular muscle and the subsequent elevation of left ventricular
pressure.

3.3 Description of the cardiovascular system model

This section outlines the equivalences between electrical and hydrodynamic indices. We can simulate the
CVS electrically by utilizing the equivalencies between hydrodynamic and electrical indicators. This model
addresses the simulation of the system and the contractile activity of the heart once the relationships and
equivalencies between an electrical circuit and the behavior defined by a segment of the CVS are established.

3.3.1 Equivalent electric model

The heart is a highly complex system that presents significant challenges for mathematical modeling. In
recent years, numerous dynamical state-space models with varying levels of complexity have been developed
[79]. The main methodology employed is that of lumped parameter models, which provide simplified descrip-
tions of the predominant behavior of each component involved in the CVS [17, 61, 79, 94, 63].

The model discussed in this work is based on an electrical representation of the CVS, as proposed in
[94, 17, 63]. The choice of this model is motivated by the need for a comprehensive model that can be
validated from a medical perspective and is capable of describing cardiovascular phenomena, such as valve
pathologies, which are among the primary risk factors for cardiovascular diseases (CVDs). This model pri-
marily targets the left chambers of the heart, assuming that voltages are analogous to pressure and currents
are analogous to blood flow. The systemic resistance RS is the resistance to flow from the descending aorta
through the capillary vessels, venous, and pulmonary circulation to reach the left atrium. Left ventricular
pressure (LVP) is represented by the voltage across the time-varying contractile capacity C(t), where its
capacitance is defined as the inverse of left ventricular elastance E(t).

The term E(t) represents the elastance of the heart at time t, which is a function of the pressure. The
mitral and aortic valves are represented as ideal diodes, DA and DM , in series with resistance RA and RM ,
respectively. The capacitor CA, represents the elasticity of the ascending aorta, simulating the pressure vari-
ations caused by the opening and closing of the aortic valve. Finally, the remaining components model the
anatomical characteristics of the circulatory system, including the elasticity represented by CS , inertia (LS),
and resistance RC of the descending aorta [99].

The electrical model circuit in Figure 3.3 has been thoroughly analyzed in [93, 99].
The state variables and parameter values of the cardiovascular circuit model shown in Figure 3.3, as

referenced from [99, 8, 93], are detailed in Tables 3.1 and 3.2 below:
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Figure 3.3: Cardiovascular circuit model.

Table 3.1: State variables of the cardiovascular system and their physiological significance of the circuit model
shown in Figure 3.3.

Variables Abbreviation Physiological Meaning (Unit)

x1(t) LVP(t) Left ventricular pressure (mmHg)
x2(t) LAP(t) Left atrial pressure (mmHg)
x3(t) AP(t) Descending arterial pressure (mmHg)
x4(t) Ao(t) Ascending aortic pressure (mmHg)
x5(t) F(t) Total aortic flow (mL/s)

3.3.2 Elastance

Elastance, denoted as E(t), relates to the state of contraction of the left ventricle. It represents the relationship
between the pressure and volumes of the LV , as defined by the following expression:

E(t) =
LV P (t)

LV V (t)− V0
=

x1(t)

LV V (t)− V0
(3.1)

where LV P (t) is the left ventricular pressure, LV V (t) = x1(t)
E(t) + V0 is the left ventricular volume, and

V0 is a reference volume, which corresponds to the theoretical volume in the ventricle at zero pressure. The
elastance function E(t) has been addressed in various studies [93]. These studies concur that the definition
can be mathematically approximated using an expression where the points at which the left ventricular
function reaches its maximum and minimum are identified used the expression:

E(t) = (Emax − Emin)En(tn) + Emin (3.2)

where Emax and Emin are constants related to the end-systolic volume (ESV) and end-diastolic vol-
ume (EDV), representing the left ventricular volumes at systole and diastole, respectively. The end-systolic
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Table 3.2: Parameter values of the CVS circuit model shown in Figure 3.3.

Parameter Value Physiological Meaning (Unit)

CS 1.33 Systemic compliance
CR 4.40 Left atrial compliance
CR 4.40 Aortic compliance
LS 0.0005 Inertia of blood in aorta
RC 0.0398 Characteristic resistance
RM 0.005 Mitral valve resistance
RA 0.001 Aortic valve resistance

Left Ventricle

Emax 2 Maximum volume in diastole
Emin 0.06 Minimum volume in diastole
Vo 10 Reference volume at zero pressure (ml)
HR 75 Heart rate (bpm)

Elastance

1.17 Shape parameter
0.7 Shape parameter
1.55 Amplitude
1.9 Ascending slope of the LV relaxation time
21.9 Descending slope of the LV relaxation time

pressure–volume relationship (ESPVR) denotes the maximal pressure of the left ventricle.

The elastance function is implemented using a number of mathematical approximations, including En(tn),
the so-called “double hill” [73].

In this work, En(tn) represents the normalized elastance at time tn. “normalized” means that it has been
adjusted or expanded to fit a specific range, often between 0 and 1 or −1 and 1. The normalized elastance
En(tn) is scaled proportionally between Emin and Emax. Specifically, when En(tn) = 0, E(t) equal Emin,
and when En(tn) = 1, E(t) equal Emax. In the context of the cardiovascular system, En(tn) describes how
elastance dynamically varies over time adjusted to heart rate, and this relationship is expressed by:

En(tn) = 1.55

(
( tn
0.7 )

1.9

1 + ( tn
0.7 )

1.9

)(
1

1 + ( tn
1.17 )

21.9

)
(3.3)

where tn = t/(0.2+0.15 60
HR

), with HR being the heart rate expressed in beats per minute (bpm). The first
term within the brackets describes the ascending segment of the curve, while the subsequent term portrays
its descending counterpart. The value 1.55 corresponds to the amplitude of elastance, which is associated
with the maximum arterial pressure. Additionally, 1.9 and 21.9 indicate the ascending and descending slopes
during the LV relaxation period, respectively, while 0.7 and 1.17 are constants that determine the proportional
representation of each curve over the cardiac cycle. Figure 3.4 illustrates the graphical representations of
these curves.
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Figure 3.4: Plot the elastance function for a healthy heart during a single cardiac cycle.

3.3.3 Cardiovascular system modeling phases
The transitions between system modes are given by ideal (non-linear) valve operations (i.e., diodes). Re-
member that the opening and closing of the mitral and aortic valves is driven by the pressure difference
between the LAP and the LV P , the LV P and AoP which are system states; that is, the mode change is
state-driven. The figure3.5 shows the four modes of the system with their corresponding transition conditions.

Figure 3.5: Interpretation of the cardiac cycle using a hybrid system

Let Q = {qi : i ∈M}, with M = {1, 2, 3} represent the set of possible discrete modes. Define X ⊆ Rn as
the continuous-time state space of dimension n. The state vector x ∈ Rn belongs to this space. The couple
(qi(t);xi(t)) ∈ QxX represents the state of the hybrid system in mode i. The subscript i stands for the active
mode qi of the system, i.e. Filling, ejection or isovolumic contraction/ relaxation.

Let the vector u ∈ R2 be the natural input vector representing the mitral valve u1 and aortic valve u2.
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3.3. Description of the cardiovascular system model

The valves of u are give by:

u1

{
0, x2 < x1
1, x2 ≥ x1

(3.4)

u2

{
0, x1 < x4
1, x1 ≥ x4

(3.5)

where u1 = {0, 0, 1, 0} and u2 = {1, 0, 0, 0} are the sequence of natural control inputs of the system (the
state of the diodes DM and DA). The values of these signals, as described in the previous equations, take
values of 1 or 0.

Filling phase (q1 = F )

During the filling phase the aortic valve is closed and the mitral valve is open. According to the phase of the
diode DA is not conducting while the diode DM allows the flow of current. A representation of the electrical
circuit is depicted in Figure 3.6 observe that, while the left ventricle (LV ) is being filled with blood, systemic
circulation is carried out by the elastic properties of the arterial system. In other words, after losing energy
due to the opposing characteristic resistance of the aortic wall (RC) and affected by the inertial of the blood
mass (LS), the blood flow reaches the peripheral arterial system; that is, capacitor CS . At the same time,
blood returns to the left atrium (CR), losing energy on the way due to resistance of the walls of the arterial
systems (RC).

Figure 3.6: Electrical representation of the Filling phase (q1 = F )

The dynamics of the circuit in the figure 3.6 are obtained by using Kirchhoff’s laws. Considering that
iC(t) = iRM and iRM = 1

RM
(x2 − x1), perform a mesh and node analysis.

In this case the capacitance of the left ventricle is variable in time so the current circulating in this ca-
pacitor is iC(t) = Ċ(t)x1 +C(t)ẋ1, then the expression iC(t) = iRM gives Ċ(t)x1 +C(t)ẋ1 = 1

RM
(−x1 + x2)

Thus ẋ1 we have the form:

ẋ1 =
1 + Ċ(t)

C(t)RM
x1 +

1

RM
x2 (3.6)

From a node analysis, the current circulating in node 1 is considered to be equal to

−x2 +RM iRM + x1 = 0 (3.7)
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solving iRM we have

iRM = − 1

RS
(x2 + x3)− CRẋ2 (3.8)

then iRM is the same as iRM
= iRs

− iCR
and replacing in the equation (3.8), we have the form:

− 1

RM
x1 +− 1

RM
x2 = − 1

RS
(x2 + x3)− CRẋ2 (3.9)

Clearing to ẋ2 of the equation (3.9) which gives :

ẋ2 =
1

CRRM
x1 −

RM +RS

CRRMRS
x2 −

1

CRRS
x3 (3.10)

From the mesh analysis it is obtained that:

−VCR + VRS + VRS = 0 (3.11)

and substituting −VCR, VRS y VRS

−x2 +RsiRS + x3 = 0 (3.12)

if we carry out the mesh analysis for the first mesh and it is considered that iRS = x5 − iCS = x5ẋ3, then:

−x2 +RS(x5 − CS ẋ3) + x3 = 0 (3.13)

−x2 +Rsx5 −RSCS ẋ3 + x3 = 0 (3.14)

−RsCS ẋ3 = x2 −RSx5 − x3 (3.15)

ẋ3 =
1

RSCS
x2 −

1

RSCS
x3 −

1

CS
x5 (3.16)

ẋ3 =
1

RSCS
(x2 − x3)−

1

CS
x5 (3.17)

performing in node analysis at CA where iCA = x5 = CAẋ4 then:

x5 = CAẋ4 (3.18)

clearing ẋ4

ẋ4 = − 1

CA
x5 (3.19)

Performing the mesh analysis of the LS is obtained;

−VCA + VRC + VLS + VCS = 0 (3.20)

and substituting VCA, VRC , VLS y VCS then:

−x4 +RCiRC + LS ẋ5 + x3 = 0 (3.21)

Clearing ẋ5

ẋ5 = − 1

LS
x3 +

1

LS
x4 −

1

LS
(RCiRC) (3.22)
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We take into account that the current in iRC = x5 and replace it in the equation (3.22), ẋ5 nos which gives:

ẋ5 = − 1

LS
x3 +

1

LS
x4 −

RC

LS
x5 (3.23)

The matrix representation of such dynamics in the form of state space is this given by:

A1(t) =


− 1+Ċ(t)RM

C(t)RM

1
C(t)RM

0 0 0
1

CRRM
− RM+RS

CRRMRS

1
CRRS

0 0

0 RM+RS

CRRMRS
− 1

CSRS
0 1

CS

0 0 0 0 − 1
CA

0 0 − 1
LS

1
LS

−RC

LS

 (3.24)

Ejection phase (q2 = E)

In this phase, the mitral valve is closed (DM is not conducting) and the left ventricle is pumping blood
through the open aortic valve (DA is active). In the figure 3.7 there is no physical connection between the
left atrium (represented by capacitor CR) and the left ventricle due to the none-conducting diode DM . In
this phase, as C(t) discharges,i.e. the left ventricle pushes blood, capacitor CA charges.

Figure 3.7: Electrical representation of the ejection phases (q2 = E)

The dynamics of the circuit in the figure 3.7, are obtained by using Kirchhoff’s laws. To solve it we made
a mesh analysis in the mesh of the inductor LS to be able to obtain ẋ5.

−VCA + VRC + VLS + VCS = 0 (3.25)

and sustaining VCA, VRC , VLS and VCS which give:

−x4 +RCiRC + LS ẋ5 + x3 = 0 (3.26)

clearing ẋ5
ẋ5 = − 1

LS
x3 +

1

LS
x4 −

1

LS
(RCiRC) (3.27)

If we take into account that the current in iRC = x5 and substitute in the equation (3.27), ẋ5 which give:

ẋ5 = − 1

LS
x3 +

1

LS
x4 −

RC

LS
x5 (3.28)

While to obtain ẋ3 is considered that iRS = x5 − iCS = x5 −CS ẋ3 and mesh analysis is performed, then:
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−x2 +RS(x5 − CS ẋ3) + x3 = 0 (3.29)

clearing ẋ3 which give

ẋ3 =
1

RSCS
(−x2 + x3) +

1

CS
x5 (3.30)

To obtain ẋ4 we develop a mesh analysis and obtain

−x1 +RAiRA + x4 = 0 (3.31)

we consider that iRA = 1
RA

(x1 − x4) and that iCA = iRA − iRC = CAẋ4 − x5 and we replace them in
−x1 +RAiRA + x4 = 0 which give

CAẋ4 − x5 =
1

RA
(x1 − x4) (3.32)

clearing ẋ4

ẋ4 =
1

RACA
x1 −

1

RACA
x4 +

1

CA
x5 (3.33)

We take into account that the capacitance in the left ventricle is variable in time, so the current circulating
in this capacitor is iC(t) = Ċ(t)x1 + C(t)ẋ1, therefore the expression iC(t) = −iRA which give Ċ(t)x1 +
C(t)ẋ1 = CAẋ4 − x5
A from a node analysis, the current circulating in node 1 is considered, and substituting CA ẋ4−x5 we obtain
that

Ċ(t)x1 + C(t)ẋ1 =
1

RA
(x1 − x4) (3.34)

clearing ẋ1 we get:

ẋ1 =
1 + Ċ(t)RA

C(t)RA
x1 +

1

RA
x4 (3.35)

In order to get ẋ2 it is noted that

CRẋ2 = x5 − CS ẋ3 (3.36)

if we substitute ẋ3 we obtain that

CRẋ2 = x5 − CS

[ 1

RSCS
(−x2 + x3) +

1

CS
x5
]

(3.37)

clearing ẋ2

ẋ2 =
1

RSCR
(−x2 + x3) (3.38)

The matrix representation of such dynamics in the form of state space is thus given by

A1(t) =


− 1+Ċ(t)RA

C(t)RA
0 0 1

C(t)RA
0

0 − 1
CRRS

1
CRRS

0 0

0 1
CSRS

− 1
CSRS

0 1
CS

1
CARA

0 0 − 1
CARA

− 1
CA

0 0 − 1
LS

1
LS

−RC

LS

 (3.39)
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Isovolumic phase (q3 = I)

The isovolumic phase occurs twice. First when the left ventricle contracts and the second when it re-
laxes.These two phases have a short duration compared to the ejection and filling phases. Both valves are
closed, meaning that neither diode DM nor DA are conducing. Thanks to the discharge of capacitors CA

and CS (contraction of aorta and arteries) blood is able to complete its journey back to the heart.

Figure 3.8: Electrical representation of the isovolumic phase (q3 = I)

To solve this, we perform a mesh analysis on the LS which give ẋ5.

−VCA + VRC + VLS + VCS = 0 (3.40)

and substituting VCA, VRC , VLS y VCS which give

−x4 +RCiRC + LS ẋ5 + x3 = 0 (3.41)

clearing ẋ5

ẋ5 = − 1

LS
x3 +

1

LS
x4 −

1

LS
(RCiRC) (3.42)

we take into account that the current in iRC = x5 to replace it in the equation (3.42), ẋ5 which give:

ẋ5 = − 1

LS
x3 +

1

LS
x4 −

RC

LS
x5 (3.43)

Although in order to obtain ẋ3 is considered the analysis of nodes where iRS = x5 − iCS = x5 − CS ẋ3
then

−x2 +RS(x5 − CS ẋ3) + x3 = 0 (3.44)

clearing ẋ3 which give

ẋ3 =
1

RSCS
(−x2 + x3) +

1

CS
x5 (3.45)

To obtain ẋ4 analysis of meshes is carried out and it is considered that iCA = −iRC = CAẋ4 y iRC = −x5.
Based on the above relationships, it is known that

CAẋ4 = −x5 (3.46)
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If we clear ẋ4 obtains

ẋ4 = − 1

CA
x5 (3.47)

To obtain ẋ3 the following is considered to be iRS = x5 − CS ẋ3 a node analysis is performed, then by
means of the mesh analysis it is obtained that

−CRẋ2 = x5 +
1

RS
(x2 − x3) + x5 (3.48)

If we clear ẋ2

ẋ2 = − 1

CRRS
(x2 + x3) (3.49)

To obtain ẋ1 through the analysis of the capacitance it is established that

iC(t) = Ċ(t)x1 + C(t)ẋ1 = 0 (3.50)

then clearing ẋ1

ẋ1 =
−Ċ(t)
C(t)

x1 (3.51)

3.3.4 Mathematical model of the cardiovascular system

We consider the CVS model basically given by the following equations [94]:


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

=


−Ċ(t)
C(t) 0 0 0 0

0 − 1
RSCR

1
RSCR

0 0

0 1
RSCS

− 1
RSCS

0 1
CS

0 0 0 0 − 1
CA

0 0 − 1
LS

1
LS

−RC

LS



x1
x2
x3
x4
x5

+


1
C(t)RM

1
C(t)RA

−1
CRRM

0

0 0
0 −1

CARA

0 0


(
DM (x2 − x1)
DA(x4 − x1)

)
(3.52)

where
(
x1 x2 x3 x4 x5

)T represents the state vector of CVS circuit model (see Figure 3.3 and Tables

3.1 and 3.2) and
(
DM

DA

)
represents the natural control input sequences of cardiovascular system, with DM

is the state of the mitral valve and DA is the state of the aortic valve given by:

DM =

{
0, x2 < x1
1, x2 ≥ x1

, DA =

{
0, x1 < x4
1, x1 ≥ x4

(3.53)

3.4 Quadratic normal form of the cardiovascular system
For the remainder of our work of the cardiovascular system, we take the output vector as

y(t) =

(
y1
y2

)
=

(
x5
x4

)
and the input vector as u(t) =

u1

u2

u3

u4

 =


DM

DA

DM
1

C(t)

DA
1

C(t)

.

Given this output, it is easy to demonstrate that x1 is linearly unobservable in system (3.52). To proceed
with calculating the quadratic normal form, we introduce the following change of coordinates:
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z11 = x5
z12 = − 1

LS
x3

z13 = − 1
LSRSCS

x2 +
1

LSRSCS
x3

z21 = x4
z22 = C(t)x1(t)

(3.54)

which is equivalent to

x1 = 1
C(t)z

2
2 = ξ1

x2 = LSRSCSz
1
3 + LSz

1
2 = ξ2

x3 = −LSz
1
2 = ξ3

x4 = z21 = ξ4
x5 = z11 = ξ5

(3.55)

We directly obtain the quadratic normal form (QNF) [10, 12] of the CVS model:

ż11 = −RC

LS
z11 + z12 + 1

LS
z21 = f1

ż12 = − 1
LSCS

z11 + z13 = f2

ż13 = 1
LSRSC2

S
z11 − βz13 − k1z

1
3u1 − k2z

1
2u1 − k3z

2
2u3 = f3

ż21 = − 1
CA
z11 − 1

CARA
z21u2 − 1

CARA
z22u4 = f4

ż22 = LSRSCS

RM
z13u1 − LS

RM
z12u1 +

1
RA
z21u2 − 1

RM
z22u3 − 1

RA
z22u4 = f5

y1 = z11

y2 = z21

(3.56)

where β = 1
RSCR

+ 1
RSCS

, k1 = 1
CRRM

, k2 = 1
RSCSCRRM

and k3 = 1
LSRSCSCRRM

.
And u1 = DM , u2 = DA, u3 = DM

1
C(t) and u4 = DA

1
C(t) .

Remark 3.4.1 As a result, building on the work in [12], thanks to the quadratic terms k3u3z22 and 1
CARA

z22u4,
we can recover observability for z22 .

3.4.1 Validation of the quadratic normal form of the CVS model
This section presents the validation process for the quadratic normal form of the CVS model obtained,
drawing upon previously established validations and incorporating diverse analytical perspectives, as detailed
in seminal works such as [8, 99]. Initially, the accuracy of the model is corroborated by putting the waveforms
of the main variables, as shown in Figure 3.9, with empirical data from healthy subjects reported in [99]. In
addition, the figure shows the original states xi(t) and QNF states ξi(t) of CVS are shown in Figure 3.9, where
we can observe the the hemodynamic waveforms of the CVS model (3.52) compared with the experimental
data.

The validation of the model also involves a dynamic analysis concerning preload and after load factors.
To evaluate this aspect, we analyze the preload and after load signals generated by both the original and
the quadratic normal form of the CVS model. Figure 3.10 displays the left ventricular pressure data and the
corresponding pressure–volume loop obtained from our model using a volume of V0 = 10 mL. It is observed
that the dynamics obtained are consistent with those described in [99].
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With these results, we can affirm that the quadratic normal form obtained offers a novel alternative for
the representation of the classical model presented in the literature. Additionally, it is crucial to emphasize
that a significant advantage of the quadratic normal form is its capacity to enable the design of observers.
These observers can estimate the states of the system that are not directly measurable and apply other
control theory concepts. An example of such an application, as discussed in this work, is fault detection and
estimation.

82



3.5. Observability analysis and observer design of the cardiovascular system

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

200

400

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

60

80

100

120

140Figure 3.9: Hemodynamic waveforms of the CVS mode: Original states xi(t) and QNF states ξi(t) of CVS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

60

80

100

120

140

60 70 80 90 100 110 120 130

0

50

100

Figure 3.10: Hemodynamic of left ventricular volume (LVV) and preload volume (PLV) in original and QNF
system

3.5 Observability analysis and observer design of the cardiovascular
system

3.5.1 Observability analysis of the cardiovascular system

Now, we will do a structural analysis of observability applied to the CVS model (3.56). For this, let O the
observability matrix given by:

O =
[
dy1, dy2, dLfy1, dLfy2, dL

2
fy1

]T
(3.57)

where f =
[
f1 f2 f3 f4 f5

]T was defined in equation (3.56) , which gives
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O =


1 0 0 0 0
0 0 0 1 0

−RC

LS
1 0 1

LS
0

−1
CA

0 0 −1
CARA

u2
−1

CARA
u4

M1
11 −RC

LS
1 M1

14 −RSCS

RM
u4

 (3.58)

with M1
11 =

R2
C

L2
S
− 1

LSCS
− 1

LS

1
CA

, M1
14 = RC

L2
S
− 1

LSCARA
u2. Then,

det(O) =
−1

CARA
u4.

In the literature [10], the term "observability singularity manifold" or "unobservability submanifold"
refers to the subset S defined by

S =
{
z ∈ R5/det[dh1, dh2, dLfh1, dL

2
fh1]

T = 0
}
.

Then, for the cardiovascular systems considered we have:

S =

{
z ∈ R5/

−1

CARA
u4 = 0

}
.

when CVS evolves on S we lose the linear and nonlinear observability. Then,

(1) If u4 ̸= 0, then rank(O) = 5 and therefore we recover the quadratic observability of z22 .

(2) If u4 = 0, then rank(O) = 4 and therefore we lose the observability of z22 .

3.5.2 Sliding mode observers design for CVS
In this subsection, we will outline the structure of the observer. For a deeper exploration into the design and
analysis of observability, readers are encouraged to consult the works cited in [87]. The observer structure
presented here accounts for quadratic observability singularities that arise due to state separation or universal
input. This methodology is derived from the step-by-step sliding mode approach as detailed in references
[7, 24, 5]. We assume that the states z11 and z21 are directly measurable, but the others are not. The sliding
mode observer is described as follows:

˙̂z11 = −RC

LS
z11 + ẑ12 + 1

LS
z21 + δ11sign

(
z11 − ẑ11

)
˙̂z12 = − 1

LSCS
z11 + ẑ13 + E1

1δ
1
2sign

(
z̃12 − ẑ12

)
˙̂z13 = 1

LSRSC2
S
z11 − βz̃13 − k1z̃

1
3u1 − k2z̃

1
2u1 − k3z̃

2
2u3 + E1

2δ
1
3sign

(
z̃13 − ẑ13

)
˙̂z21 = − 1

CA
z11 − 1

CARA

(
z21u2 + ẑ22u4

)
+ δ21sign

(
z21 − ẑ21

)
˙̂z22 = −LSRSCS

RM
z̃13u1 − LS

RM
z̃12u1 − 1

RM
z̃22u3 +

1
RA
z21u2 − 1

RA
z̃22u4

+E2
1δ

2
2sign

(
z̃22 − ẑ22

)
(3.59)

In system (3.60), the auxiliary components z̃qi are calculated algebraically as follows:

z̃12 = ẑ12 + δ11sign(z
1
1 − ẑ11)

z̃13 = ẑ13 + δ12sign(z̃
1
2 − ẑ12)

z̃22 = ẑ22 + ESM

k3u3+ESM−1E
1
2δ

1
3sign

(
z̃13 − ẑ13

)
with the following conditions:
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• if ẑ11 = z11 and ẑ21 = z21 then E1
1 = E2

1 = 1 otherwise E1
1 = E2

1 = 0,

• if ẑ12 = z12 and E1
1 = E2

1 = 1 then E1
2 = 1 otherwise E1

2 = 0.

And, to ensure observability is not lost near the observability singularity, you must accurately set ESA

and ESM , such that:

• if u1 = 1 then ESM = 1 otherwise ESM = 0,

• if u4 = 1 then ESA = 1 otherwise ESA = 0.

Which gives:

z̃13 = ẑ13 + ESM

−LSRSCS
RM

u1+ESM−1
δ22sign(z̃

2
2 − ẑ22)

z̃22 = ẑ22 + CARAESA

u4+ESA−1E
2
1δ

2
1sign(z

2
1 − ẑ21)

Remark 3.5.1 The quality of the estimation of z22 depends on the choice of ESA and ESM . Therefore, it is
essential to adjust ESA and ESM within a small neighborhood of the singularity to ensure that the structure
without feedback is applied for the minimum amount of time necessary.

Remark 3.5.2 Since u1 and u2 cannot be equal to one at the same time, also u3 = u1
1

C(t) , and u4 = u2
1

C(t)

then when u3 = 1 and u4 = 0, we use the quadratic term k3z
2
2u3 to recover the information of z22 in this case

z̃22 = z22 + ESM

k3u3+ESM−1E
1
2δ

1
3sign

(
z̃13 − ẑ13

)
and when u3 = 0 and u4 = 1, we use the quadratic term 1

CARA
z22u4 to recover the information of z22 in this

case
z̃22 = ẑ22 + CARAESA

u4+ESA−1E
2
1δ

2
1sign

(
z21 − ẑ21

)
Now, we present the proof of the convergence of the observer (3.60). The study of the observer’s stability

and convergence uses equivalent vector methods [21]. The observer convergence strategy is carried out step
by step on different sliding surfaces and ensures convergence of the observation error in 3 steps and in finite
time to zero in the Lyapunov sense ([7], [24], [5]).

Proof 3.5.1 The dynamics of the observer error (e = z − ẑ) is written:



ė11 = −RC

LS
e11 + e12 +

1
LS
e21 + δ11sign

(
z11 − ẑ11

)
ė12 = − 1

LSCS
e11 + e13 + E1

1δ
1
2sign

(
z̃12 − ẑ12

)
ė13 = 1

LSRSC2
S
e11 − βe13 − k1e

1
3u1 − k2e

1
2u1 − k3e

2
2u3 + E1

2δ
1
3sign

(
z̃13 − ẑ13

)
ė21 = − 1

CA
e11 − 1

CARA

(
e21u2 + e22u4

)
+ δ21sign

(
z21 − ẑ21

)
ė22 = −LSRSCS

RM
e13u1 − LS

RM
e12u1 − 1

RM
e22u3 +

1
RA
e21u2 − 1

RA
e22u4 + E2

1δ
2
2sign

(
z̃22 − ẑ22

)
(3.60)

• Step 1:Assume z11(0) ̸= ẑ11(0) and z21(0) ̸= ẑ21(0) and as E1
1 = E1

2 = E2
1 = 0 in the first step, we obtain

the following observation error dynamics:

ė11 = −RC

LS
e11 + e12 +

1
LS
e21 + δ11sign

(
z11 − ẑ11

)
ė12 = − 1

LSCS
e11 + e13

ė13 = 1
LSRSC2

S
e11 − βe13 − k1e

1
3u1 − k2e

1
2u1 − k3e

2
2u3

ė21 = − 1
CA
e11 − 1

CARA

(
e21u2 + e22u4

)
+ δ21sign

(
z21 − ẑ21

)
ė22 = −LSRSCS

RM
e13u1 − LS

RM
e12u1 − 1

RM
e22u3 +

1
RA
e21u2 − 1

RA
e22u4
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Let S1 = {e11 = e21 = 0} be the sliding surface and the Lyapunov function V 1
1 =

(e11)
2

2 and V 1
1 =

(e21)
2

2 . The
sliding surface is attractive if and only if V̇ 1

1 = e11ė
1
1 < 0 and V̇ 2

1 = e21ė
2
1 < 0, then

e11

(
−RC

LS
e11 + e12 +

1

LS
e21 + δ11sign

(
z11 − ẑ11

))
< 0 and

e21

(
− 1

CA
e11 −

1

CARA

(
e21u2 + e22u4

)
+ δ21sign

(
z21 − ẑ21

))
< 0

By choosing, δ11 >
∥∥e12∥∥max

and δ21 >
∥∥e22∥∥max

, there exists a finite time τ1 ⩾ 0 such that ∀t ⩾ τ1 we have
ẑ11 = z11 , ẑ21 = z21 and E1

1 = E2
1 = 1. Then ė11 = ė21 = 0. Therefore

z̃12 = ẑ12 + δ11sign
(
z11 − ẑ11

)
and

z̃22 = ẑ22 +
CARA

u4
E2

1δ
2
1sign

(
z21 − ẑ21

)
So we can see that when u4 = 0, z̃22 tends to infinity, meaning that observability singularity occurs. Thus,

to avoid the explosion of z22 we introduce a ESA as follows: If u4 = 0 then ESA = 0 otherwise ESA = 1.
Then z̃22 becomes:

z̃22 = ẑ22 + CARAESA

u4+ESA−1E
2
1δ

2
1sign

(
z21 − ẑ21

)
and consequently, by choosing, δ11 >

∥∥e12∥∥max
and δ21 >

∥∥e22∥∥max
, there exists a finite time τ1 ⩾ 0 such

that ∀t ⩾ τ1 we have ė11 = ė21 = 0 and z̃12 = z12 and z̃22 = z22 .

• Second Step: The aim of this step is to reach e11 = e21 = 0. So ∀t ⩾ τ1, we have z̃12 = z12 and z̃22 = z22 .
As ẑ11 = z11 and ẑ21 = z21 then E1

1 = 1, E2
1 = 1 then e11 = 0 and e21 = 0 for all t ≥ τ1 then ė12 = 0 and ė22 = 0

then consequently, invoking the equivalent vector, z̃12 = z12 and z̃22 = z22 , we obtain:

ė11 = 0
ė12 = e13 + δ12sign

(
z̃12 − ẑ12

)
ė13 = − (β + k1u1) e

1
3

ė21 = 0
ė22 = −LSRSCS

RM
e13u1 + δ22sign

(
z̃22 − ẑ22

)
To do this, let’s pose the Lyapunov function: V 1

2 =
(e11)

2

2 +
(e12)

2

2 and V 2
2 =

(e21)
2

2 +
(e22)

2

2 . The sliding
surface S2 =

{
e11 = e12 = e21 = e22 = 0

}
is attractive if and only if

V̇ 1
2 = e12ė

1
2 = e12

(
e13 + δ12sign

(
z̃12 − ẑ12

))
< 0

and
V̇ 2
2 = e22ė

2
2 = e22

(
−LSRSCS

RM
e13u1 + δ22sign

(
z̃22 − ẑ22

))
< 0

By choosing, δ12 >
∥∥e13∥∥max

and δ22 >
∥∥e13∥∥max

, there exists a finite time τ2 ≥ τ1 ≥ 0 such that ∀t ≥ τ2, we
have ẑ12 = z12 , ẑ22 = z22 and E1

1 = E2
1 = E1

2 = 1. Then ė12 = ė22 = 0. Therefore

z̃13 = ẑ13 + δ12sign
(
z̃12 − ẑ12

)
or

z̃13 = ẑ13 − 1
LSRSCS

RM
u1
δ22sign(z̃

2
2 − ẑ22)
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3.6. Conclusion

Due to the finite time convergence of the sliding mode, there exists τ2 > τ1 > 0 such that ∀t ≥ τ2,
ẑ12 = z̃12 = z12 and ẑ22 = z̃22 = z22 then we pass to the:

• Third Step: The aim of this step is to reach e11 = e12 = e21 = e22 = 0. So ∀t ⩾ τ2, we have z̃13 = z13 .

As ẑ11 = z11 , ẑ
1
2 = z12 , ẑ21 = z21 and ẑ22 = z22 then E1

1 = E2
1 = E1

2 = 1, then consequently, invoking the
equivalent vector, z̃ = z, we obtain:

ė11 = 0
ė12 = 0
ė13 = δ13sign

(
z̃13 − ẑ13

)
ė21 = 0
ė22 = 0

Let S3 =
{
e11 = e12 = e13 = e21 = e22 = 0

}
be the sliding surface and the Lyapunov function V 1

3 =
(e11)

2

2 +
(e12)

2

2 +
(e13)

2

2 . The sliding surface is attractive if and only if

V̇ 1
3 = e13ė

1
3 = e13

(
δ13sign

(
z̃13 − ẑ13

))
< 0

Then e13 converges to 0 in a finite time τ3 > τ2 for any value of δ13 > 0 and if all conditions δ11 , δ12, δ21
and δ22 are satisfied after τ2.

3.6 Conclusion
This chapter has provided a comprehensive overview of the cardiovascular system (CVS), detailing its dy-
namic behavior and the underlying principles governing its function. We have described the heart’s role as a
pump that generates the necessary pressure for blood circulation, both systemic and pulmonary.

We reviewed the state of the art in cardiovascular modeling, highlighting the use of electrical analogies to
represent hydrodynamic indices of the CVS. This approach was justified and validated through comparisons
with clinical and experimental data, confirming its effectiveness in capturing the complexities of cardiovas-
cular dynamics.

Additionally, the chapter introduced the quadratic normal form of the cardiovascular system, demon-
strating its potential to provide a refined representation of the system’s behavior. This advanced form of
analysis enables more accurate modeling and improves the ability to detect anomalies within the cardiovascu-
lar system. The adaptation of this model for anomaly detection was also discussed, showcasing its practical
applications in monitoring cardiovascular health.

In summary, this chapter has advanced the understanding of cardiovascular dynamics by integrating
theoretical insights with practical modeling techniques. The introduction of the quadratic normal form and
its application to anomaly detection represents a significant step forward in cardiovascular system analysis,
offering a robust framework for enhancing diagnostic and monitoring tools in the field.
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Chapter 4

Diagnostic and detection anomaly of
CVS
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4.1 Introduction
This chapter explores the design of sliding mode observers for multi-Input multi-Output (MIMO) nonlinear
systems are, with a focus on addressing the challenges of observability in both linearly observable and linearly
unobservable cases.

Building on prior research by [10], [12], and [15], which utilizes quadratic approximation and a specialized
normal form involving a quadratic input-output injection, this work leverages these methods to reveal the
inherent observability properties of nonlinear systems. The quadratic normal form is particularly advanta-
geous, as it reduces the complexity of analyzing nonlinear systems while preserving the structural properties
essential for observability studies. This form serves as a middle ground between exact linearization techniques
and the complexities of strongly nonlinear systems.

Recent studies such as [12] and [52] introduce the concept of an observability singularity manifold in
the vicinity of certain critical points, where the system experiences a loss of observability. In such cases, it
is possible to recover some observability properties by employing universal inputs and resonant terms. To
address these issues and fully utilize the structural properties of the system, we propose the use of sliding
mode observers. As suggested by [101], [80], and [22], these observers, with their variable structure, provide
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a robust approach to overcoming the challenges of observability singularities. The sliding mode approach
thus offers a promising solution for the design of observers that maintain observability even in the presence
of singularities, ensuring reliable performance for a broader class of nonlinear systems.

4.2 Diagnostic and fault detection methodology
For many centuries, detecting faults or malfunctions relied solely on human senses, a method still widely used
today. This involved observing changes in appearance, listening for unusual sounds, feeling for vibrations or
heat, and detecting odors from leaks or overheating. Eventually, measuring instruments were developed to
provide more precise data on key physical parameters. However, these sensors also became susceptible to
failure, leading to the issue of false alarms. This problem grew even more critical when sensors were inte-
grated into automated control systems, where malfunctions could have immediate and severe consequences,
and human intervention was often removed from the process.

In this context, fault detection and diagnosis (FDD) techniques are essential for ensuring the safety, re-
liability, and performance of complex systems. Specifically, in cardiovascular system, FDD plays a critical
role in maintaining patient safety and ensuring the proper functioning of medical devices. This section will
begin with an introduction to the field of fault detection and diagnosis, followed by an example related to
cardiovascular system. The first example will focus on the detection and isolation of valve faults within the
cardiovascular system. The second example will address fault detection challenges within a cardiovascular
system model.

In general, faults can be described as deviations from the expected behavior of the system or its instru-
mentation. The faults of interest typically fall into the following categories:

Figure 4.1: Stages of model-based fault detection and diagnosis

Table 4.1: Types of faults in systems.

Faults Description Examples Effect

Additive pro-
cess faults.

These are unknown inputs acting on the sys-
tem, typically absent under normal condi-
tions, when present, they affect the system
outputs independent of the known inputs.

system leaks,
external loads,
and similar
disturbances.

Changes in system
outputs indepen-
dent of known
inputs.

Multiplicative
process faults

These involve abrupt or gradual changes in
some system parameters, which lead to out-
put variations that depend on the magni-
tude of the known inputs.

Surface con-
tamination,
blockages,
power loss.

Changes in system
outputs that de-
pend on the mag-
nitude of known in-
puts.
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Table 4.1: (continued)

Faults Description Examples Effect

Sensor faults These occur when there is a discrepancy be-
tween the measured and actual values of
system variables. Generally, sensor faults
are additive, as they are independent of the
magnitude being measured. However, some
sensor malfunctions, like sticking or total
failure, may be better represented as mul-
tiplicative faults.

Measurement
errors, sensors
sticking or
total failure.

Typically addi-
tive, but some
may be better
characterized as
multiplicative.

Actuator
Faults

These arise when there is a mismatch be-
tween the input command given to an actu-
ator and its actual output. Actuator faults
are commonly treated as additive, but cer-
tain types (e.g., sticking or total failure)
might be more accurately modeled as mul-
tiplicative faults.

Actuators
sticking or
complete
failure.

Usually additive,
but can be multi-
plicative in certain
cases.

On the other hand, fault detection and diagnosis (FDD) systems perform the following key tasks:

1. Fault detection: Identify whether a fault has occurred within the system by continuously monitoring
sensor data, control signals, and outputs. This task aims to recognize deviations from normal system
behavior.

2. Fault isolation: Pinpoint the specific location or component in the system where the fault has oc-
curred. This requires distinguishing between different potential faults that may produce similar symp-
toms.

3. Fault identification: Determine the nature and severity of the fault. This includes categorizing
the fault type (e.g., additive, multiplicative, sensor, actuator) and assessing its impact on system
performance.

In practice, many fault detection and diagnosis systems are structured to focus primarily on the detection
and isolation tasks, often referred to as FDI systems. This approach aligns with real-world operational needs,
where quick fault detection and isolation are paramount for maintaining system reliability and safety. The
FDI systems typically feature robust mechanisms for detecting faults and isolating them effectively, enabling
rapid response to issues without the added complexity of full fault identification.

4.2.1 Classification of fault detection and diagnosis methods
Fault detection and diagnosis (FDD) methods can be broadly classified into two major categories based on
their reliance on mathematical models of the system:

Model-Free Techniques

Model-free techniques do not depend on a mathematical representation of the system’s dynamics. Instead,
they utilize data-driven approaches to identify faults. Common model-free techniques include:

• Statistical Methods: These involve analyzing historical data to identify patterns indicative of faults.
Techniques such as control charts, regression analysis, and hypothesis testing are often employed.
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• Machine Learning Approaches: Algorithms like support vector machines, decision trees, and neural
networks are trained on input-output data to detect anomalies and predict faults without explicit system
models.

• Signal Processing Techniques: Methods such as time-frequency analysis and wavelet transforms
analyze signals for deviations from expected behavior, helping to identify potential faults.

• Rule-Based Systems: These systems apply predefined rules to the data, allowing for fault detection
based on known symptoms or patterns.

Model-Based Methods

Model-based fault detection and diagnosis method approaches leverage a specific mathematical model of the
monitored system. Most model-based fault detection and diagnosis methods are grounded in the principle
of analytical redundancy. Unlike physical redundancy, where measurements from parallel sensors are com-
pared, this approach involves comparing sensory measurements with analytically computed values of the
corresponding variable. This concept can also be expanded to the comparison of two analytically generated
quantities derived from different sets of variables. In both cases, the resulting differences, referred to as
residuals, indicate the presence of faults within the system.

The generation of residuals, they must be evaluated to make detection and isolation decisions as shown
in figure 4.2. Due to the influence of noise and model inaccuracies, the residuals are never zero, even in
the absence of faults. Consequently, making a detection decision involves assessing the residuals against
established thresholds, which can be determined empirically or through theoretical analysis.

Figure 4.2: Stages of model-based fault detection and diagnosis

Residual generation is a critical step in model-based fault detection and isolation (FDI) systems. It in-
volves creating a signal (residual) that indicates the presence of faults by comparing the expected behavior
of the system (as predicted by the model) to the actual behavior. Here are four overlapping approaches to
residual generation:

Kalman Filtering: They provide a way to estimate system states and can also be employed for fault
detection by analyzing the residuals generated from the filter. The residual signal, defined as the difference
between the actual output and the estimated output, will have a mean of zero if there is no fault (and
disturbance) and becomes nonzero in the presence of faults.

Diagnostic observers: Observer-based methods involve the design of observers (like Luenberger ob-
servers or sliding mode observers) to estimate system states. The residuals are generated by comparing the
observer’s output with the actual output of the system. An observer is designed to estimate the states based
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Figure 4.3: Kalman Filtering

on input and output measurements. The residual is computed as:

r = y − ŷ

Observers are constructed to estimate system states. The comparison between estimated and actual states
provides insights into potential faults.

Parameter estimation: Parameter estimation serves as an effective method for detecting and isolating
parametric (multiplicative) faults. The process begins by creating a reference model of the system during
normal operation, free of faults. Parameters are then continuously re-estimated in real time. Any deviations
from this reference model are utilized for fault detection and isolation. Although parameter estimation can
offer greater reliability compared to analytical redundancy approaches, it demands more computational re-
sources and specific input excitation conditions for effective implementation.

Parity relations: The parity space method involves transforming the system equations into a form that
highlights discrepancies (residuals) between expected and actual outputs. This is achieved by using mathe-
matical manipulations of the system’s equations. The system is described in terms of state-space or output
equations. A parity relation is derived, relating inputs and outputs under fault-free conditions. Residuals are
then generated by examining deviations from this relation. This method can be advantageous for systems
with a high level of redundancy, as it can detect multiple faults simultaneously.

In this work we are based on a method based on diagnostic observers under the methodology presented
in the following sections.

4.3 Expansion of the cardiovascular model for detection of anoma-
lies

In this section, we will present the adaptation of the model (3.52) by including the following fault vector
F , which describes the variations affecting the mitral valve fm and the aortic valve fao. In the context of
the cardiovascular system, variations affecting the mitral valve Dm and the aortic valve Da are significant
contributors to valvular heart diseases, which are a leading cause of cardiovascular morbidity and mortality.

We conceptualize the fault in the mitral valve (fm) as the nominal value modeled as a percentile addition
or subtraction to the input value (1 or 0) defined in Equation (3.53). Similarly, the fault in the aortic valve
(fao) is considered. As shown in Figure 4.4, the fault vector is added into the input signal of the system.
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Figure 4.4: Cardiovascular system with fault in the mitral valve.

We consider faults in the inputs DM and DA for detecting anomalies in the mitral and aortic valves. As
described before, the valves are an input vector that can only have 0 or 1, representing the ideal opening and
closing of the mitral and aortic valves. However, there are cases when a valve either does not close completely
or does not open fully. This medical terms to refer to these situations are valve regurgitation (fault closing)
and valve stenosis (fault opening). Now, we propose to adapt the model (3.52) by including the following
fault vector F , which describes variations acting on the mitral valve fm and the aortic valve fao.

F (t) =

[
fm
fao

]
, such as:

{
U1 = DM + fm
U2 = DA + fao

(4.1)

where DM and DA are the nominal values of the real state of the mitral and aortic valves, respectively,
fm and fao are the faults corresponding to the mitral and aortic valves, respectively. The fault model of the
CVS have the following form:

ẋ1 = −Ċ(t)
C(t) x1 −

1
C(t)RM

(x1 − x2)U1 − 1
C(t)RA

(x1 − x4)U2

ẋ2 = 1
RSCR

(x3 − x2) +
1

CRRM
(x1 − x2)U1

ẋ3 = 1
RSCS

(x2 − x3) +
1
CS
x5

ẋ4 = − 1
CA
x5 +

1
CARA

(x1 − x4)U2

ẋ5 = − 1
LS
x3 +

1
LS
x4 − RC

LS
x5

(4.2)

Remark 4.3.1 In observer design, U1 and U2 are considered as bounded unknown inputs [24, 5].

4.3.1 Residual generator for cardiovascular anomalies detection

The most common valve pathologies are related to the aortic and mitral valves. In both cases, these involve
a defect in the closure of the valve, known as valve regurgitation. Aortic valve regurgitation refers to a defect
in the valve closure that leads to backward leakage into the left ventricle during diastole. Patients with aortic
regurgitation exhibit PV loops with increased amplitude and displacement to the right, indicating that the
stroke work is higher, and the pressure–volume area is also increased compared to a healthy case. Similarly,
mitral valve pathologies involve leakage during systole from the LV to the left atria (LA).

Based on this information, this section presents the design of the fault detection and isolation (FDI)
system, this design is based on the assumption that only one fault can occur at any given time. Therefore,
two simulation scenarios were considered for fault detection based on the analysis of the generated waveforms
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pressure.

As shown in Figure 4.5, the first scenario is mitral regurgitation (fm), and in scenario 2, the fault is aortic
regurgitation (fao). To meet this requirement effectively, the sliding mode observers presented in [88] are
used, which enable precise estimation of sensor measurements.

Figure 4.5: Bank of observers for all actuator faults estimation.

In Figure 4.5, the y(t) denotes the output vector of CVS, where y1 = x5 and y2 = x4. These outputs
serve as inputs to the observer, as they are the signals required for the observer to initiate the estimation
process. In this thesis, the residuals are defined as the difference between the output variables represents
that the most basic residual r(t) can be expressed as:

r = y(t)− ŷ(t) = (sing(ȳ))eq (4.3)

Define e = x− x̂ as the state estimation error, where

x̂1 = 1
C(t) ẑ

2
2

x̂2 = −LS ẑ
1
2 − LSRSCS ẑ

1
3

x̂3 = −LS ẑ
1
2

x̂4 = ẑ21
x̂5 = ẑ11

.

The bank of two observers and the residual generator proposed is associated with the SMO designed
previously in ([88]).

In this work, the residual generation is achieved by the means of two single step-by-step sliding mode
observer, where the faults have been estimated by the observers. When there is no fault, i.e., fm = 0 and
fao = 0, the error will asymptotically converge to the true state. We also observed that the residuals in the
presence of an anomaly in the mitral valve (U2) are almost the same as the residuals in the aortic valve (U1).
However, the changes in the pressure and flow signals of the system are different. This is why, due to the
robustness of the observer, we could implement failure isolation and determine when a failure occurs in the
mitral and aortic valves.

Below, Table 4.2 presents a comprehensive signature for residual generation. This table is instrumental
in understanding the nuanced differences in residual patterns, which are key to our failure isolation strategy.
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4.4. Simulation Results

Each signature has been meticulously derived to ensure the precise detection and localization of anoma-
lies within the mitral and aortic valves, highlighting the sophisticated nature of our observer’s diagnostic
capabilities.

Table 4.2: Signature for the residual generation.

Residuals/Faults Anomalie on U1 Anomalie on U2

r1(t) 0 0
r2(t) 0 0
r3(t) 1 1
r4(t) 0 0
r5(t) 1 1

4.4 Simulation Results
For the initial condition, we refer to those specified in [8], defined as follows:

x = [7.4, 5, 85, 82, 0]T and ẑ = [5,−11× 104, 5.7143× 104, 0, 150]T .

Figure 4.6 illustrate the effectiveness of the choice of ESA and ESM for the good estimation z11 , z12 , z13 ,
z21 and z22 . We can see that from the transformation presented in 3.55 we can obtain the estimated states x̂2
and x̂3 from the measurable outputs. In Figure 4.6, we assume that ESA = 0 if u4 = 0 and ESM = 0 if u3 = 0.

0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

1

2

Figure 4.6: States of u3, ESM , u4 and ESA
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Chapter 4. Diagnostic and detection anomaly of CVS

Figure 4.7 shows the hemodynamic waveforms for a healthy individual with a heart rate (HR) of 75 bpm.
The waveforms are consistent, as will be explained. The systolic pressure (LAP) and diastolic pressure (LVP)
were measured at 117 mmHg and 77 mmHg, respectively. The ascending aorta pressure (AoP), resulting from
the opening and closing of the aortic valve and the pressure wave propagation along the aorta, presented a
delayed waveform. From the transformation presented in Equation (3.1), we can derive the estimated states
x̂1, x̂2, and x̂3 from the measurable outputs x̂4 and x̂5. Figure 4.7 presents the states of systems (3.52) and
the observer (3.60). It demonstrates how the state estimation converges completely for all states within a
time frame of 0.2 s.
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Then, the left ventricle volume and preload volume (LVV) in Figure 4.8 represent the result of changing
afterload conditions. Even with variations in preload and afterload, the relationship between end-systolic
pressure and left ventricular volume should be roughly linear if the model functions as predicted. This
relationship is known as the end-systolic pressure–volume relationship. By employing an especially built
sliding mode observer to estimate the system’s state x1, we were able to determine the left ventricle’s volume
and preload volume using expression (3.1). This is because the state x1 is described by recalling Frank–
Starling’s law, allowing us to gain more insight into the hemodynamic behavior of the heart in a healthy
individual. The conditions were simulated with Emax = 2 mmHg/mL, Emin = 0.05 mmHg/mL, and V0 =
10 mL.

Remark 4.4.1 These data are compared and confirmed with the results described in [93, 99, 17], where the
aortic pressure and flow waveforms are all consistent with hemodynamics data on healthy individuals.
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Figure 4.8: Hemodynamic of the left ventricular volume (LVV) and preload volume (PLV) in original and
SMO of CVS.
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In the following sections, three different fault scenarios are presented: Scenario 1 involves mitral regurgi-
tation, while Scenario 2 involves aortic regurgitation and Simultaneous mitral and aortic regurgitation.

4.4.1 Scenario 1: Mitral Regurgitation

In this scenario, we consider a 50% regurgitation in the mitral valve (i.e., fm = 0.5 when u1 = 0 and fao = 0).
The simulation of the mitral valve fault was modeled by adding a binary value (1 or 0) to the input u1. This
modification was introduced at time t = 2.5 s, corresponding to the fourth cardiac cycle.
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Figure 4.10: States of input with fault fm
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4.4. Simulation Results

Figure 4.10 illustrates the outcomes following the fault occurrence in the mitral valve. It is observed that,
post-fault, the dynamics of the aortic valve, u3 and u4 are altered due to their dependence on u1 and u2.
Figure 4.11 presents the simulated hemodynamic waveforms for an individual with heart failure. Here xi
is the original model and x̂i is the estimated signal provided by the observer (for i = 1, 2). We can verify
that when the failure occurs, the SMO is not able to estimate the volume correctly due to the loss of x1, as
illustrated in the figure showing the failure in the original model PLVfm and ˆPLV fm (Figure 4.11). Also,
the simulation indicates changes in the dynamic system upon fault occurrence, with a decrease in blood flow
waveforms and alterations in pressure waveforms.
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Figure 4.11: Original states xi(t) and observer states x̂i(t) of CVS for an unhealthy heart (i = 1, 2)

On the other hand, as shown in Figure 4.12, we can show that the observer can reconstruct the unobserv-
able state when the failure occurs, but only states x3, x4 and x5 are able to to convergent again to the true
state. Here xi is the original model and x̂i is the estimated signal provided by the observer (for i = 3, 4, 5).
We show that the sliding mode observer can adapt to the change in the system dynamics.
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On the other hand, Figure 4.13 indicates that when mitral regurgitation is present, the SMO is unable to
accurately estimate the volume due to the loss of x1, as shown in the comparison between the original model
LV V and the observer-estimated model ˆLV V . However, we know that this information can be used to fault
detection.
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Figure 4.13: Left ventricular volume (LVV) in original and SMO of CVS

Similarly, we can also see that when a failure occurs, the dynamics of PLVfm and P̂LVfm are lost due to
the loss of x1. This is seen in the comparison between the original model PLVfao and the model estimated
by the observer ˆPLV fao

as shown in Figure 4.14.
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Figure 4.14: Preload volume (PLV) in original and SMO of CVS

Figure 4.15 shows the dynamic behavior of the error between the real system and the observer. As can be
observed, states x1 and x2 present an error in the presence of the fault, contrary to the error in the remaining
states converges to zero.
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Figure 4.15: Estimation error of the original states xi(t) and observer states x̂i(t) of CVS
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4.4.2 Scenario 2: Aortic Regurgitation

In this scenario, we consider a 50% regurgitation in the aortic valve (i.e., fao = 0.5 when u2 = 0 and fm = 0).
The simulation of fault in the aortic valve was modeled by adding a binary value (1 or 0) to the input u2.
This change was introduced at the time t = 2.5 s.

0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

0.5

1

0 1 2 3 4 5 6 7 8
0

1

2

Figure 4.16: Input with fault fao

Figures 4.17 show the results after the fault occurs in the aortic valve. Figures 4.17 show simulation
waveforms of hemodynamics for a patient with aortic regurgitation. Here xi is the original model and x̂i is
the estimated signal provided by the observer (for i = 1, 2).
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Figure 4.17: Original states xi(t) and observer states x̂i(t) of CVS for an unhealthy heart (i = 1, 2)
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4.4. Simulation Results

SMO can adjust to changes in system dynamics. Additionally, when the failure occurs, the observer can
rebuild the unobservable state; nevertheless, as shown in Figure 4.18, only the states x3, x4, and x5 can
converge to the original state. Here xi is the original model and x̂i is the estimated signal provided by
the observer (for i = 3, 4, 5). Additionally, we were able to determine the left ventricular volume using the
response described by expression (3.1), assuming that the heart is healthy, as illustrated in Figure 4.19.
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Figure 4.19: Hemodynamic for left ventricular volume (LVV) in original and SMO of CVS
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Additionally, we were able to determine the preload volume using the response described by expression
(3.1), assuming that the heart is healthy and that after some time the fault is presented, as illustrated in
Figure 4.20.
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Figure 4.20: Simulated hemodynamic waveforms for preload volume (PLV) in original and SMO of CVS

Figure 4.21 shows the dynamic behavior of the error between the real system and the observer. As can be
observed, states x1 and x2 present an error in the presence of the fault, contrary to the error in the remaining
states converges to zero.
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Figure 4.21: Estimation error of the original states xi(t) and observer states x̂i(t) of CVS

104



4.4. Simulation Results

In summary, the results align well with the hemodynamic parameters reported in the existing literature
and experimental data, which support the validity of the proposed model and demonstrate its capability to
produce results that are comparable to medical data. However, a larger-scale study with a greater number
of tests would be necessary to obtain more precise results.

4.4.3 Scenario 3: Simultaneous mitral and aortic regurgitation

Simultaneous mitral and aortic regurgitation refers to the concurrent leakage of blood backward through
both the mitral valve and the aortic valve. This dual valve dysfunction can lead to significant hemodynamic
consequences, as it affects both the inflow and outflow of blood in the heart, often resulting in heart failure
if untreated.

The complexity of managing valvular heart disease increases significantly when both the aortic and mitral
valves are involved, as their simultaneous dysfunction impacts both the inflow and outflow of blood within
the heart. As we have already seen, each valve plays a distinct role in maintaining proper blood circulation:
the mitral valve regulates blood flow between the left atrium and left ventricle, while the aortic valve controls
blood leaving the left ventricle into the systemic circulation. When both valves are affected, their combined
dysfunction can lead to significant hemodynamic instability.

In this section, we consider the case of a patient with simultaneous aortic and mitral regurgitation. For
this purpose, we consider the following conditions, 50% on both valves (i.e. fao = 0.5 and fm = 0.5). The
simulation of the valve faults was modeled by adding a binary value (1 or 0) to the input u1 and u2. This
change was introduced at time t = 2.5 s.

In the figure 4.22, we can see that after the fault occurs in the aortic valve and mitral valve, there is a
change in the mitral and aortic valves (DM and DA) . It is evident that, after the fault occurs in the valves,
u3 and u4 exhibit altered dynamics due to their dependence on u1 and u2.
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Figure 4.22: States of input with fault in fm and fao
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Figure 4.23 represents the results after the fault occurs in the valves, this figure presents the simulation
waveforms of the hemodynamics for an individual with simultaneous of aortic and mitral regurgitation. When
simultaneous mitral and aortic regurgitation occurs we observe changes in the system dynamics when the
fault occurs, including variations in blood flow waveforms (decrease in blood flow) and an increase in pressure
waveforms. In this case, x1 and x2 presents an increase in pressure, while x3 and x4 presents a decrease in
the pressure. As shown in Figure 4.23, this phenomenon occurs due to concurrent backward leakage of blood
through the mitral valve and aortic valve. Here xi is the original model and x̂i is the estimated signal provided
by the observer (for i = 1, 2, 3, 4).
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Figure 4.23: Original states xi(t) and observer states x̂i(t) of CVS for an unhealthy heart (i = 1, 2, 3, 4)
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4.5. Conclusions

On the other hand we can observe that the SMO has the capacity to adapt to the change in in system
dynamics. The observer is able to reconstruct the unobservable state when the fault occurs; however, only
the states x3, x4 and x5 can be convergent again to the true state, while state x1, x2 have a constant error,
as depicted in Figure 4.24.
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Additionally, we were able to determine the left ventricular volume and preload volume using the response
described by expression (3.1), assuming that simultaneous failure occurs across the mitral and aortic valves
(simultaneous mitral and aortic regurgitation), as illustrated in Figure 4.25.
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Figure 4.25: Hemodynamic for a Left ventricular volume (LVV) in original and SMO of CVS

On the other hand, when a failure occurs, the SMO is unable to accurately estimate the preload volume due
to the loss of x1, as shown in the comparison between the original model PLVfao and the observer-estimated
model ˆPLV fao

(Figure 4.26). However, we believe that despite these results we can use the observer to detect
faults in the system.

Figure 4.27 shows the dynamic behavior of the error between the real system and the observer. As can be
observed, states x1 and x2 present an error in the presence of the fault, contrary to the error in the remaining
states converges to zero. Finally, we can say that the simulated hemodynamic waveforms for a failing heart
with simultaneous fm and fao valve failure were presented.

4.5 Conclusions
This chapter has provided a comprehensive mathematical model of the cardiovascular system capable of
simulating both normal and pathological states, specifically focusing on fault detection and isolation. The
proposed model, which incorporates electrical analogies, offers a novel representation by transforming the
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Figure 4.26: Hemodynamic for a reload volume (PLV) in original and SMO of CVS
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Figure 4.27: Estimation error of the original states xi(t) and observer states x̂i(t) of CVS

cardiovascular system into a QONF. This form facilitates the design of a sliding mode observer, enhancing
the model’s ability to estimate system states and detect anomalies such as valvular heart diseases, which are
significant risk factors for cardiovascular diseases.
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4.5. Conclusions

Our results indicate that the SMO can adapt to changes in system dynamics and reconstruct unobserv-
able states when faults occur. The observer successfully estimated the states x3, x4, and x5, while x1 and x2
showed persistent errors under fault conditions. The model’s validity was affirmed through simulations that
replicated hemodynamic parameters that are consistent with the existing literature and experimental data.
Additionally, the SMO demonstrated its effectiveness in scenarios of aortic and mitral valve regurgitation by
accurately reconstructing the system dynamics post-failure. The results obtained were validated by compar-
ing the data and the simulations presented in [93, 99, 17].

The findings underscore the potential of the proposed model and observer in clinical decision support,
offering a less invasive, economical, and efficient alternative for monitoring cardiovascular health and diagnos-
ing pathologies. However, further studies with larger datasets and a higher number of tests are recommended
to refine the model and enhance the precision of the results. This work contributes significantly to the field
of cardiovascular modeling, providing a robust tool for understanding and managing cardiovascular diseases
through advanced fault detection and isolation techniques.
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General conclusions and perspectives

Conclusions

This thesis has presented a comprehensive exploration of the higher-order observability normal form for
nonlinear multi-input multi-output (MIMO) systems, leveraging the second-order Poincaré normal form to
develop a novel approach for solving homological equations. The quadratic observability normal form intro-
duced in this work offers a more general and less restrictive framework compared to traditional methods,
providing a deeper insight into the structural properties of both linearly observable and linearly unobservable
systems, and improves the understanding of system observability in complex nonlinear settings.

The introduction of the quadratic observability normal form marks a significant advancement in the study
of nonlinear systems. This form allows for a more detailed characterization of system dynamics by extending
the classical observability theory to higher-order terms, which is particularly important when dealing with
complex nonlinearities. The research demonstrates that the quadratic normal forms obtained in this study
differ fundamentally from those presented in previous works. By outlining the conditions under which a
diffeomorphism can transform a given nonlinear system into its quadratic observability normal form, this
thesis provides a robust theoretical foundation for analyzing observability properties across a wider range
of applications. The method effectively captures the intrinsic characteristics of the system, allowing for a
clearer distinction between observable and unobservable modes.

Furthermore, the practical application of this method is demonstrated through its use in modeling a
nonlinear cardiovascular system. Specifically, the transformation of the cardiovascular system into its normal
observable form enables a more precise understanding of its dynamics, particularly under pathological con-
ditions. By converting the model into a quadratic normal form, the study reveals how various physiological
parameters and their variations impact the system’s observability. This transformation is key to accurately
identifying the state variables that are critical to monitoring cardiovascular health, such as ventricular pres-
sure, atrial pressure, and systemic pressure, which are often not directly measurable. The use of this normal
form also facilitates the design of more effective state observers, which are essential for fault detection and
diagnosis in complex biomedical systems.

At the same time, in this work, starting from the basis of the normal form of quadratic observability,
the thesis develops a sliding mode observer (SMO) for general nonlinear systems. The SMO is designed to
estimate the state variables that are not directly accessible from system outputs, even when the system is
not linearly observable. By taking into account the singularities of observability, the proposed observer can
recover the full state of the system under various conditions, demonstrating its robustness and adaptability.
The observer’s design is guided by the quadratic normal form, which simplifies the structural analysis of the
system and provides a clear framework for handling the nonlinearities and singularities inherent in complex
MIMO systems. This approach allows for enhanced performance in state estimation, making it highly appli-
cable in diverse fields, such as engineering, robotics, and biological systems.
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For this reason, the specific application of the sliding mode observer to a nonlinear cardiovascular model
illustrates the practical utility of the theoretical developments in this thesis. The observer is tailored to detect
anomalies such as mitral and aortic valve dysfunctions, which are significant risk factors for cardiovascular
diseases. By using measurements like aortic pressure and total flow, the observer can estimate unmeasured
states, enabling the reconstruction of the system dynamics even when faults occur. Numerical simulations
demonstrate that the proposed observer can adapt to changes in physiological parameters and maintain ac-
curate state estimation, even in the presence of faults like valve regurgitation. The effectiveness of the SMO
in reconstructing unobservable states post-failure highlights its potential as a powerful tool for real-time
monitoring and diagnosis of cardiovascular conditions.

The ability to detect and isolate cardiovascular anomalies is a key contribution of this research. By de-
signing a residual generator based on the sliding mode observer, this thesis presents an innovative approach
to identifying deviations in the performance of the heart’s mitral and aortic valves. The residual generator is
sensitive to changes in both vascular resistances and valve functions, providing a robust means of detecting
and differentiating between different types of cardiovascular anomalies. The simulations confirm that the pro-
posed methodology can effectively detect faults, such as valvular regurgitation, and reconstruct the system
dynamics under abnormal conditions. This capability makes the approach highly valuable for clinical deci-
sion support, offering a less invasive, economical, and efficient alternative to conventional monitoring methods.

Overall, this thesis makes a significant contribution to the field of nonlinear system observability by ex-
tending the quadratic observability normal form and applying it to a real-world biomedical problem. The
integration of advanced mathematical tools, such as the second-order Poincaré normal form, with practical
observer design techniques, demonstrates the potential for innovative solutions in complex systems modeling
and analysis. The proposed sliding mode observer, supported by robust theoretical underpinnings and vali-
dated through comprehensive simulations, provides a versatile tool for monitoring cardiovascular health and
diagnosing pathologies.

Perspectives
This thesis opens several research opportunities for future works. Some of these are presented below:

• Apply the quadratic observability normal form to nonlinear systems in order to deal with more com-
plex systems such as the human body, neuroscience, and robotics, where high-dimensional and highly
nonlinear systems are prevalent.

• Extension of the observability quadratic normal form of MIMO systems for Discrete Time Systems.

• Design and implement adaptive sliding mode observers (SMOs) that can learn and adjust to changing
system dynamics in real time. The current SMO design is robust for detecting faults and estimating
states in nonlinear systems, but it assumes certain fixed system parameters. However, biomedical
monitoring, involve systems that exhibit time-varying or uncertain parameters. For this reason, it
seems interesting to study this idea.

• Develop patient-specific cardiovascular models that use the quadratic observability normal form and
sliding mode observer frameworks to provide personalized health monitoring and diagnosis. Personalized
models could provide more accurate predictions and diagnostics.

• Apply the quadratic observability normal form to design fault-tolerant observer strategies that can
handle unexpected failures or sensor faults in real-time applications.
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