Please use this identifier to cite or link to this item:
https://rinacional.tecnm.mx/jspui/handle/TecNM/6739
Title: | Optimización de Hiperparámetros en Modelos de Aprendizaje Automático: Aplicación en la Predicción de Enfermedades Cardiovasculares |
Authors: | Sanchez Jimenez, Eduardo%1165521 |
metadata.dc.subject.other: | Enfermedades Cardiovasculares -Modelos de Aprendizaje Automático - Predicción |
Issue Date: | 2024-01-12 |
Publisher: | Tecnológico Nacional de México |
metadata.dc.publisher.tecnm: | Centro Nacional de Investigación y Desarrollo Tecnológico |
Description: | Los modelos de predicción son herramientas analíticas que utilizan datos históricos y estadísticas para realizar inferencias que apoyan en la toma de decisiones, en particular, en el campo médico. Estos modelos están conformados por variables llamadas hiperparámetros que se configuran antes del proceso de entrenamiento, con el objetivo de capturar patrones complejos de los datos. Además, su configuración tiene un impacto directo en el desempeño predictivo. La predicción de enfermedades cardiovasculares se ha convertido en un área de gran interés debido a su impacto en la salud pública. La identificación temprana y precisa de los factores de riesgo y la predicción de eventos cardiovasculares son esenciales para mejorar el diagnóstico y el tratamiento de los pacientes. En este contexto, este trabajo aborda la configuración de hiperparámetros para maximizar el desempeño de los modelos de predicción de enfermedades cardiovasculares. La propuesta de solución consiste en la aplicación de seis enfoques de optimización con el objetivo de semiautomatizar la búsqueda de los valores para los hiperparámetros de los modelos Random Forest, Support Vector Machine y XGBoost. Los resultados de la investigación muestran que enfoques de optimización Bayesian Optimization, Particle Swarm Optimization, y Genetic Algorithm proporcionaron mejoras significativas en las métricas: accuracy, recall y sensitivity. En el proceso de optimización del modelo Random Forest se identificó que la mejora en el rendimiento está directamente relacionada con el aumento tanto del número y la profundidad de árboles de decisión. El modelo Support Vector Machine destaca su desempeño en las métricas accuracy y specificity, lo que demuestra su fiabilidad a la hora de clasificar correctamente tanto instancias positivas como negativas. Por otro lado, el modelo XGBoost destaca en la métrica de recall, es decir, mayor habilidad en la identificación precisa de instancias positivas. En esta tesis se estudiaron los mecanismos de optimización y se determinaron las configuraciones que mejoran la predicción de enfermedades cardiovasculares. Estos resultados tienen implicaciones importantes en el área de la inteligencia artificial aplicada al dominio médico, y ofrecen una base sólida para investigaciones futuras. |
metadata.dc.type: | info:eu-repo/semantics/masterThesis |
Appears in Collections: | Tesis de Maestría en Computación |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MC_Eduardo_Sanchez_Jimenez_2024.pdf | Tesis | 8.36 MB | Adobe PDF | View/Open |
MC_Eduardo_Sanchez_Jimenez_2024_C.pdf Restricted Access | Cesión de derechos | 133.01 kB | Adobe PDF | View/Open Request a copy |
This item is protected by original copyright |
This item is licensed under a Creative Commons License