Please use this identifier to cite or link to this item:
https://rinacional.tecnm.mx/jspui/handle/TecNM/6959
Title: | Evaluación de algoritmo de Aprendizaje Automático mediante Bosques Aleatorios para el seguimiento de variables críticas en un proceso de manufactura |
Authors: | Agundis Martínez, Adrián Fernando |
Issue Date: | 2023-01 |
Publisher: | Tecnológico Nacional de México |
metadata.dc.publisher.tecnm: | Instituto Tecnológico de Nuevo León |
Description: | Esta tesis aborda la problemática de aplicación de algoritmos de aprendizaje automático para el monitoreo de variables críticas en un proceso de manufactura. El uso de algoritmos aplicados a este tipo de problemas puede ayudar al pronóstico de detección de fallas, comportamiento en función de un historial de datos. Existe una diversidad de algoritmos de aprendizaje automático, en este caso se evalúo el de bosques aleatorios y el algoritmo Prophet. El objetivo de esta investigación fue evaluar el desempeño del algoritmo de Bosques Aleatorios (Random Forest) en procesos de manufactura para su estudio en el seguimiento de variables críticas con respecto a otros algoritmos. La metodología que se usó fue implementar el desarrollo de una aplicación del modelo de bosques aleatorios para el seguimiento de diversas variables como lo son temperatura, presión, aire, torque, velocidad de rotación e inclusive se abordó brevemente en series de tiempo, con el fin de evaluar con el algoritmo Prophet en base una serie de métricas en común. |
metadata.dc.type: | info:eu-repo/semantics/bachelorThesis |
Appears in Collections: | Ingeniería Sistemas Computacionales |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TRABAJO ADRIAN FERNANDO AGUNDIS febrero 2023.pdf | 1.91 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License