Tesis Validadas: 2,591

Tesis de Posgrado: 2650

Número de Visitas: contador visitas

Por favor, use este identificador para citar o enlazar este ítem: https://rinacional.tecnm.mx/jspui/handle/TecNM/4150
Título : Agrupamiento difuso titubeante para tareas de segmentación de imágenes y reconocimiento de patrones
Autor : Vela Rincon, Virna Viridiana%327715
metadata.dc.subject.other: Segmentación de imágenes
Reconocimiento de patrones
Agrupamiento difuso
Conjuntos difusos titubeantes
Agrupamiento automático
Fecha de publicación : 2022-06-10
Editorial : Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Centro Nacional de Investigación y Desarrollo Tecnológico
Descripción : Entre las distintas áreas de la Inteligencia Artificial se encuentra el Reconocimiento de Patrones y la Visión por Computadora, que se han beneficiado utilizando los métodos de aprendizaje auto-mático. Normalmente, el más utilizado es el aprendizaje no supervisado, siendo un caso especial de éste el agrupamiento o clustering. El agrupamiento es una técnica que permite identificar grupos dentro de un conjunto de datos, de tal manera que estos grupos o clusters compartan ciertas características similares. Un algoritmo clave en esta área es el algoritmo Fuzzy C-Means, que maneja cierto grado de pertenencia para representar a cada dato con respecto a cada uno de los grupos, permitiendo ser mas flexible que el agrupamiento clásico, de tal manera que se puede expresar la pertenencia de un dato hacia todos los grupos simultáneamente. La teoría de este algoritmo se ha ido extendiendo con la finalidad de mejorar la exactitud del grado de pertenencia asignado a un dato, tal es el caso de los conjuntos difusos tipo-que permiten una distribución de posibilidades, los conjuntos difusos intervalo evaluados un margen de error y los conjuntos difusos intuitivos permite un grado de pertenencia, de no pertenencia e indecisión. Sin embargo su dificultad es debido a que se tiene un conjunto de valores posibles. Como una alternativa, los Conjunto Difusos Titubeantes (Hesitant Fuzzy Sets) permiten expresar el agrupamiento de los datos através de varios posibles valores de pertenencia para un sólo elemento de un conjunto de referencia, a diferencia de las demás teorías, se puede tener varios valores posible en lugar de uno solo, permitiendo una mayor flexibilidad y un mejor desempeño en la agrupación. En esta investigación se propone un algoritmo de agrupamiento difuso mediante la incorporación de la lógica de funcionamiento de los conjuntos difusos titubeantes aplicable al reconocimiento de patrones y segmentación de imágenes.
metadata.dc.type: info:eu-repo/semantics/doctoralThesis
Aparece en las colecciones: Tesis de Doctorado en Computación

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DC_Virna_Viridiana_Vela_Rincon_2022.pdfTesis4.08 MBAdobe PDFVisualizar/Abrir
DC_Virna_Viridiana_Vela_Rincon_2022.pdf
  Restricted Access
Cesión de derechos966.12 kBAdobe PDFVisualizar/Abrir  Request a copy


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons