
Por favor, use este identificador para citar o enlazar este ítem:
https://rinacional.tecnm.mx/jspui/handle/TecNM/7426
Título : | Modelo computacional de aprendizaje automático para la predicción de la demanda eléctrica |
Autor : | Aguilar Tirado, Adrian |
metadata.dc.subject.other: | computación red neuronal energía eléctrica predicciones pronosticar |
Fecha de publicación : | 2023-06-01 |
Editorial : | Tecnológico Nacional de México |
metadata.dc.publisher.tecnm: | Instituto Tecnológico Superior de Teziutlán |
Descripción : | El objetivo de esta investigación fue desarrollar un modelo computacional basado en una red neuronal recurrente de regresión para predecir la demanda de energía eléctrica. Se tomaron en cuenta múltiples variables, como el clima y la demanda consumida por los usuarios, entre otros. Para lograrlo, se recopilaron conjuntos de datos históricos de la demanda de energía en la zona oriente de los estados de Puebla y Veracruz, los cuales se utilizaron para entrenar y evaluar el modelo de red neuronal. El modelo de red neuronal fue capaz de capturar patrones complejos en los datos y generar predicciones cercanas a los valores reales de la demanda de energía eléctrica. Sin embargo, se observó que el rendimiento del modelo estaba influenciado por la calidad de los datos utilizados en el entrenamiento. Además, se exploró la arquitectura de la red neuronal recurrente (RNN) de regresión durante el proceso de prueba del modelo de predicción, demostrando ser una herramienta efectiva para pronosticar la demanda de energía eléctrica. |
metadata.dc.type: | info:eu-repo/semantics/masterThesis |
Aparece en las colecciones: | Maestría en Sistemas Computacionales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Tesis de Maestría#Aguilar Tirado Adrián.pdf | Tesis | 3.98 MB | Adobe PDF | Visualizar/Abrir |
Licencia de Uso#Aguilar Tirado Adrián.pdf Until 9999-03-15 | Licencia | 404.85 kB | Adobe PDF | Visualizar/Abrir Request a copy |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons